GTECH 20300 - Introduction to Remote Sensing
Fall 2016, Hunter North 1090B
Wednesday 4:10pm-7:30pm

Contact Information
Instructor: Dr. Wenge Ni-Meister
Email: Wenge.Ni-Meister@hunter.cuny.edu
Office: HN1029
Office Phone: 212-772-5321
Office hours: Wednesday: 3pm-4pm or by appointment
Department Information: HN1006, Phone: 212-772-5265

Prerequisites: Permission of instructor

Course Description: 4 hrs (2 lec, 2 lab), 3 cr. This course provides an introduction to remote sensing science and technology. Topics include basic remote sensing principles, aerial photography, photogrammetry, image interpretation and satellite sensors and remote sensing applications. It emphasizes the use of remote sensing technology to study our changing environment. Weekly labs explore the use of various image display and analysis tools to visualize, interpret and analyze remote sensing images.

Course Objectives and Learning Outcomes:
By the end of the semester, you will
• Have the basic knowledge of remote sensing science and technology.
• Understand how the remote sensing data are collected and used to study the environment and to monitor our changing planet.
• Gain the basic remote sensing image interpretation and analysis skills.

Grading:
Final exam: 20%
Lab exercises: 55%
Quizzes: 20%
Participation 5%

Final Exam: The final exam focuses on testing the understanding of the overall knowledge of remote sensing science and technology.

Lab Exercises include computer-based analysis of remotely sensed images, supplemented by topics covered during lectures. You will learn basic image interpretation and some web-based image processing skills through various lab exercises.
Quizzes: Instead of the in-class midterm exam, quizzes will be given at the beginning of each class meeting. Quizzes include short-answer questions based on the material covered from previous lectures.

Participation is graded based on attendance and contribution to in-class discussion.

Grading Policy
Grading will following Hunter College policy as outlined in the online undergraduate catalog that can be found at http://catalog.hunter.cuny.edu/.

I do not give incompletes (IN) except under the most extraordinary, and documented, circumstances. You must contact me within 48 hours of the final exam and request IN as a grade. At that time you will schedule a date to meet with me at the college and complete a Contract to Resolve Incomplete Grades. Otherwise, I will average the grades I have for you and record you the grade you have earned.

If you miss an exam, you must (1) contact me within 48 hours of the missed exam, (2) present acceptable documentary evidence for your absence, and (3) be available for the make-up exam (Note: there will be one make-up exam day at the end of the semester held outside of class for those eligible). A make-up exam covers the same material as the regular exam but will not be the same exam given as scheduled. (i.e. DON'T MISS AN EXAM).

Resources
- All class materials will be posted on Bb.

Essential Policy Information:
- Attendance/lateness policy: I expect to see you Wednesday 4:10pm-7:30pm in HN1090B unless I receive acceptable documentary evidence for your absence ahead of time, otherwise you will be marked with missing a class.
- Late work/missed tests/Incompletes: The last day to submit the required lab work is Dec. 7, 2016, unless I receive acceptable documentary evidence for your tardiness.
- Email Policy
 - Please use **GTECH 203 Introduction to Remote Sensing** in the subject line when you email me. I do not answer email with insufficient subject lines
 - Please **sign your full name as it appears in CUNYfirst to any message**. I do not answer unsigned email messages.
 - Student email will be responded within 24 hours. Please note there will be a delay for messages sent over the weekend or during non-business hours.

Hunter College Statement on Academic Integrity
Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures. Plagiarism, dishonesty, or cheating in any portion of the work required for this course will be punished to the full extent allowed according to Hunter College regulations.
ADA Policy
In compliance with the American Disability Act of 1990 (ADA) and with Section 504 of the Rehabilitation Act of 1973, Hunter College is committed to ensuring educational parity and accommodations for all students with documented disabilities and/or medical conditions. It is recommended that all students with documented disabilities (Emotional, Medical, Physical, and/or Learning) consult the Office of AccessABILITY, located in Room E1214B, to secure necessary academic accommodations. For further information and assistance, please call: (212) 772-4857 or (212) 650-3230.

Syllabus Change Policy
- Except for changes that substantially affect implementation of the evaluation (grading) statement, this syllabus is a guide for the course and is subject to change with advance notice.
- Any changes will be updated through Bb.

Tentative Daily Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lectures</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Aug. 31</td>
<td>Overview</td>
<td>Google Earth</td>
</tr>
<tr>
<td>Week 2</td>
<td>Sept. 7</td>
<td>How Remote Sensing Works</td>
<td>Explore Online Digital Images</td>
</tr>
<tr>
<td>Week 3</td>
<td>Sept. 14</td>
<td>Characteristics of Remote Sensing Data</td>
<td>Color Theory</td>
</tr>
<tr>
<td>Week 4</td>
<td>Sept. 21</td>
<td>Aerial Photography Interpretation</td>
<td>Image Interpretation</td>
</tr>
<tr>
<td>Week 5</td>
<td>Sept. 28</td>
<td>Photogrammetry</td>
<td>Photogrammetry Measurements</td>
</tr>
<tr>
<td>Week 6</td>
<td>Oct. 5</td>
<td>Remote Sensors</td>
<td>Image Analysis Online Tools</td>
</tr>
<tr>
<td>Oct. 12</td>
<td>No Classes Scheduled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Oct. 19</td>
<td>Earth Observation Satellites</td>
<td>NASA Eyes on the Earth</td>
</tr>
<tr>
<td>Week 8</td>
<td>Oct. 26</td>
<td>Digital Image Analysis</td>
<td>Image Analysis Tool – ENVI</td>
</tr>
<tr>
<td>Week 9</td>
<td>Nov. 2</td>
<td>Images from Space</td>
<td>ENVI Basic Functions</td>
</tr>
<tr>
<td>Week 10</td>
<td>Nov. 9</td>
<td>RS Application: Vegetation</td>
<td>Mapping Vegetation Cover</td>
</tr>
<tr>
<td>Week 11</td>
<td>Nov. 16</td>
<td>RS Application: Urban</td>
<td>Mapping Urban</td>
</tr>
<tr>
<td>Week 12</td>
<td>Nov. 23</td>
<td>RS Application: Fire</td>
<td>Fire Visualization</td>
</tr>
<tr>
<td>Week 13</td>
<td>Nov. 30</td>
<td>RS Application: Climate Change</td>
<td>Climate Change</td>
</tr>
<tr>
<td>Week 14</td>
<td>Dec. 7</td>
<td>Final Review</td>
<td></td>
</tr>
<tr>
<td>Week 15</td>
<td>Dec. 21</td>
<td>Final Examination</td>
<td></td>
</tr>
</tbody>
</table>