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Modeling Lidar Waveforms in Heterogeneous and
Discrete Canopies

Wenge Ni-Meister, David L. B. Jupp, and Ralph Dubayah

Abstract—This study explores the relationship between laser G(z, 6;)

waveforms and canopy structure parameters and the effects of -
the spatial arrangement of canopy structure on this relationship
through a geometric optical model. Studying laser waveforms h
for such plant canopies is needed for the advanced retrieval of '*¢
three-dimensional (3-D) canopy structure parameters from the hy
vegetation canopy lidar (VCL) mission.

For discontinuous plant canopies, a hybrid geometric optical p,
and radiative transfer (GORT) model describing the effects of 3-D
canopy structure parameters of discrete canopies on the radiation

environment has been modified for use with lidar. The GORT Jo

model is first used to describe the canopy lidar waveforms as a P(z)

function of canopy structure parameters and then validated using
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biomass. Because of clumping, only the gap probability and ap-
parent vertical projected foliage profile can be directly retrieved
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within, and below plant canopies, which is the energy sourpeofile (CHP) is calculated by using a logarithmic transfor-
for the exchange of heat, mass, and carbon in land surfaggtion of (1-canopy cover), and relative CHP is computed by
is fully driven by the horizontal and vertical dispersion oflifferencing CHP and dividing by total canopy CHP [12], [13],
canopy elements. In addition, land surface roughness affel@k Close relationships have been found between such derived
the exchanges of mass, energy and momentum between fopesameters from laser waveforms and field measurements.
canopies and the lower atmosphere. However, the relationships are generally empirical and the
Measuring 3-D canopy structure from the ground is difficupredicted parameters based on the relationships are often
and time consuming. Remote sensing, including passive atampared with field data based on measurements of the same
active remote sensing, provides a technically consistent me#yyze.
for estimating many landsurface biophysical parameters atA physical model describing the laser photon interaction
large regional to global scales. However, most passive remetgh plant canopies can be used to explore the relationship
sensing systems, although mapping the horizontal organizattmtween lidar waveforms and 3-D canopy structure parameters.
of canopies, do not provide direct information on the vertic&ome recent studies have modeled laser beam interaction with
distribution of canopy elements. Furthermore, measuremgiént canopies using ray tracing techniques [6], [29], that
of or accounting for ground topography in densely vegetateelquire knowledge of the exact tree size, shape, and the exact
areas is either not possible or very difficult using traditiondbcation of each tree, which is difficult to obtain in practice.
remote sensing methods. A simpler canopy radiation model which can characterize the
Recent technologies based on laser lidar systems have thewaveforms as a function of the statistical parameters of the tree
tential to overcome these problems. The systems being usedg@wmetry at the the scale of forest stands may be more useful
the design of the spaceborne vegetation canopy lidar (VCI),the application of lidar remote sensing for forest characteri-
the current airborne laser vegetation imaging sensor (LVISjgtion. A tree “stand” is an area covered by trees from the same
and the previous scanning lidar imager of canopies by echo species association with similar basic spatial and functional ar-
covery (SLICER) have shown great promise and capacity tangements. In forestry, for example, stands usually have a spe-
retrieve 3-D canopy structure information [3], [4]. Key objeceific age class or distribution. VCL and LVIS with 25 m foot-
tives of VCL, LVIS, and SLICER are to provide estimates ofrintand SLICER with a 10 m footprint are designed to measure
not only canopy height and canopy structure parameters lbahopy structure information at the integrated tree stand level.
possibly also of biomass and volume [3], [4], [12], [13], [16]Such aggregated canopy radiation models are well suited for the
[20]. Data from large-footprint scanning lidars will soon bestudy of the VCL, LVIS, and SLICER missions.
come much more widely available with the launch of the VCL The objective of this study is to adapt a simple stand-based
[3]. Over its 18-month lifetime, this NASA instrument will ac-radiation model to characterize laser waveforms from plant
quire global data on forest structure. canopies as a function of canopy structure parameters within
These lidar systems use a laser system with large diamdtgge footprints. For homogeneous plant canopies, Beer's
footprints, (10—15 m for SLICER and 25 m for VCL and LVIS).Law has often been used. However, for discontinuous natural
A laser pulse at 1.064m is fired directly from zenith to nadir vegetation, a geometric-optical and radiative transfer (GORT)
and reflected by the land surface and structures such as vegefpgroach is more suitable.
tion above it. The time elapsed since the pulse was fired meaThe GORT model was originally developed to model the bidi-
sures the distances to scattering events and the terrain surfaceectional reflectance of discontinuous plant canopies [35]. It has
laser waveform is formed by recording the laser energy returntzeen modified for modeling the solar radiation transmission and
a function of time. The waveform is a function of canopy heiglabsorption by canopy elements [22]. Using the geometric optics
and vertical distribution of foliage, as it is made up of the r¢GO) approach, the clumping of leaves into tree crowns for dis-
flected energy from the surface area of canopy components sgohtinuous plant canopies is well described. The hierarchical
as foliage, trunks, twigs, and branches, at varying heights withélumping structure of plant canopies, including the clumping of
the large footprint. The total waveform is therefore a measuremdedles into shoots, shoots into branches, branches into whorls,
both the vertical distribution of vegetation surface area and thad whorls into crowns for conifer forests, has been found to be
distribution of the underlying ground height. well modeled by GORT [22]. The radiative transfer (RT) com-
Canopy structure parameters as well as ground elevation gament of the model characterizes the multiple scattering within
be directly derived from the laser waveforms. For exampléhe canopies. The GORT model has been applied and validated
ground elevatioris calculated from the elevation of the pealin conifer forests for photosynthetically active radiation (PAR)
of the last return in the waveform, which is the reflection frontransmission, solar radiation transmission [22], bidirectional re-
the ground.Canopy heighttan be calculated as the distancélectances [23], [27], surface albedo [26], and spatial variances
between the first significant return above threshold and tloé remote sensing imageries [24], [25].
ground [28], [21], [16], [12], [13], [4].Canopy cover the The GORT model is different from ray tracing models in that
fraction of background obscured by vertically projected foliagé models the integrated radiation regime within plant canopies
and woody area above a certain height, is calculated by thietree stand scale. The inputs are distribution functions of tree
cumulative laser returns from the canopy to that height dividggtometry parameters (such as mean tree size, shape and den-
by the total returns from the canopy and the ground adjustsitly) and the spectral properties of canopy elements and back-
by a ratio to account for differences in ground and canogyound. This integrated approach corresponds to the way in
reflectance at 1.064m [12], [13]. Cumulative canopy height which foresters and ecologists take measurements in fixed and
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variable plots, and it suited well to study the large-footprint lidar Note that (1) is different from the atmospheric lidar model
systems. [19], which was applied by Sun and Ranson [34] for canopy
In this study, we use the GORT model to describe the lididar. The atmospheric lidar model is a two-way attenuation
waveforms as functions of tree geometry parameters, andniadel, since the atmospheric elements (molecules or aerosols)
study the effects of the clumping in natural vegetation on ttege small and do not occlude radiation. However, for plant
relationship of laser waveforms and canopy structure paranoanopies, canopy elements such as leaves, twigs, and branches
ters. We begin by developing the basic canopy lidar equationsre large enough to cast shadows. Because all shadows in the
direction of the incident pulse are occluded, the laser beams are
II. BACKGROUND scattered preferably back to the same direction as the incident
beams, i.e., to the backward direction. For the current lidar
system, the laser beam therefore has a peak return from nadir.
Let P°(z) denote the probability that there is a gap abovenis is the so-called hotspot effect [7]. In this case, a one-way
heightz in a canopy. For laser beams over a large footprint egttenuation model is used because a scattering surface that can
tering the canopy from the top, the expected proportions of the reached by laser energy will also be “visible” to the receiver.
attenuated laser beams over the footprint at height levelsd |y the future, if a lidar system is used that can receive the
7 — Az areP(z) andP(z — Az). P(z) — P(z — Az) isthe €X-  returned laser energy in a direction different from the incident
pected proportion of laser energy intercepted by the canopy &lgam direction, a hot spot interaction term as a function of
ments within the thin layer of widti\z. WhenAz approaches jncident and returned directions must be added to (1). The use
zero,lima.—o(P(z) — P(z — Az)/Az) = (dP(z)/dz) isthe  of sych bistatic lasers (although not lidars) to plant canopy
beam interception density. The intercepted laser beams aregRalysis has been described by [11].
flected by the canopy elements and returned back to the receivefrpe yolume backscattering coefficient of a canopy elemgnt
Assume R,(z) is the integrated laser energy return froms g function of leaf angular distribution, phase function of leaf
canopy top to height, 1,(0) is the integrated laser energyscattering, and spectral properties (e.g., leaf transmittance and
return from top to the bottom of the vegetation layiy, is the  |eaf reflectance). If the phase function of the foliage elements

laser energy return from the grount, is the beam irradiance, gepend only on scattering angle, it can be written as
p, is the backscattering coefficient of the ground, apds the

A. Basic Canopy Lidar Equation

volume backscattering coefficient of the basic canopy foliage _ 1@
i . ) Pv = W (6)
element. Then the basic canopy lidar equations are 4w
dR, () dP(z) where(p(£)/4m)w is the bidirectional reflectance distribution
T, 0T, (1) function (BRDF) at the unit of»—*. To convert it to reflectance
R, = Jop,P(0) 2) units (unitless), a constant sr is applied.w is the single scat-

tering albedo of leaves, with = » + ¢, wherer andt are the
wheredR,(»)/d~ is the lidar energy return density within theleaf reflectance and transmittangés) is the volume scattering

canopy layer. phase function of plant canopies with

The termJ, must be modeled explicitly since systems such
as SLICER, VCL and LVIS are operated in a way that allows the / p(&) dQ = 1. (7)
emitted laser pulse energy to be modified over different surfaces an 4T

(i.e., water versus forest) [Blair, personal communication]. ;0 is the solid angle elemert,is the scattering angle
Equation (1) can also be rewritten as

dR,(z dP(z
IR g TP g F()P) @) | | »
dz dz where(6;, ¢;) are the zenith and azimuth angles of the incident

where F,,,(z) is called here the “apparent foliage profile,"beam direction, an®.., ¢,) are the zenith and azimuth angles
which we have defined as of the scattered direction. For plant canopjgg,) is a function
1 dP(z) dlogP(2) of spectral scattering coefficients of leaves and their orientation

cos{ =cosb;cos b, +siné; sin b, cos(¢; — d)  (8)

Fopp(2) = = (4) distribution [30].
" P(z) dz dz For randomly oriented lambertian leaves
Note thatZF,,, is related to the relative canopy height profile 8/ w .
(relative CHP) as used by [12], [13], [8]. The relative CHP will p(é) = — <3—(Sin£ —&cosé) + 3 co8 5) . 9)
W v

be denoted here b¥,

wpp @nd is defined in terms df,, () as

For vertical lambertian leaves

" F,..(z
app(z) = @L() ) 8¢in f; sin 0,
[ Py P8, 0, Ag) = O
= w, . t
wherez; andz, are the heights of the lower and upper boundary : (<§(Sm A — Agcos Ag) + 5 €08 A¢)
of the canopy layer. The interpretation &f,,(») and Fy;, () (10)

in terms of the vertical distribution of canopy elements is dis-
cussed later. whereA¢ = ¢, — ¢; with 0 < A¢ < 7.



1946

For horizontal lambertian leaves

‘ _ 7‘| cos f; cos 9’U|7
p(eza 91/) - {t| CcoS 91 COs 9'U|?

leaf surface intersects
otherwise.
(11)
Since the laser return is at the hotspdtf 0) for randomly
oriented lambertian leaves, we have

8t
= —. 12
&) = o (12)
For green vegetation = 0.6w, t = 0.4w for w < 0.5, other-
wiser = 0.7w, t = 0.3w [31]. At 1.064 um, w > 0.5 [30]
for green plant canopy. Thus, we haxy&) = 0.8. Equation (6)
becomes
(13)

Pv — —-
5
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of the backscattering coefficient of the plant cangRy,and at-
mospherically corrected laser pulse enefgythe estimated gap
probability can be directly retrieved from the lidar waveform as

R,(2)

Pzxy=1- .
() JOp'U

(20)
As previously definedR, (z) is the accumulated laser energy
return from the canopy top to height levelvithin the canopy
layer. This can be directly obtained from the lidar waveform.
However,J, is not always available since the data are often not
calibrated and the outgoing pulse power is often not measured
reliably. It therefore may be hard to retrieve the vertical profile
only from (20).

Nevertheless, by using the ground return as a reference and
with some knowledge of the ground and foliage reflectance ratio
it is possible to obtainP(z) from uncalibrated data using the

To parameterize the volume backscattering coefficient of tf@llowing three equations

groundp, and we assume the ground is a Lambertian surface,

thenp(&) is written as

p(£)={2 SSg

0 otherwise.

(14)

Assumew, is the single scattering albedo of the ground, then

~ p(é)

9= e (15)
For backscattering
pg = %wg. (16)
From (13) and (15), we obtain
. 2
o2 (17)
Pg 2 Wy
For vertical lambertian leaves
Pv . (18)
Pg
For horizontal lambertian leaves
r i, leaf surface intersects
w
Pu _ . I (19)
Py — = otherwise.
2 wy

R, = Jop,P(0) (21)
R,(0) = Jopu(1 — P(0)) (22)
Ro(z) = Jop,(1 - P(2)). (23)
Combining these we have
R,(2) 1
P(z)=1- RO o0 Ty (24)
Py Ro(0)

R,(z), R,(0) and R, are the laser energy returns from the
canopy top to height, from canopy top to ground, and from
the ground return individually. Their ratio®, (z)/R,(0) and
R,/R,(0) can easily be calculated from the lidar waveform.
Thus, with the knowledge ¢f,/p,, P(z) can be retrieved from
an uncalibrated canopy lidar waveform.

FromP(z), apparent and relative foliage profiles can be esti-
mated from (4) and (5). Replacidg(>) in (4) and (5) by (24),
we notice thatt,,,(#) is quite sensitive to the value of,/p,,
but £y, (z) is not. The reason is that the effectqf/ p, appears
in both numerator and denominator K, (), in agreement
with [12] and [13].

It follows that, in addition to the canopy height, which is
a straightforward product from laser waveforms, a vegetation
lidar system can provide gap probabili#y(z), the vertical
profiles of canopy covet — P(z), apparent foliage,,,, (=),
and relative apparent foliagé; (z), provided p,/p, is
known. These are the techniques commonly used to retrieve
canopy structure parameters from lidar waveforms [14], [12],

As we have seen in the previous equations, the lidar energy). Note thatp,/p, changes with leaf orientation factor

returnis a function of laser pulse energy, the vertical distributiggqg spectral properties of the leaves and background and will
of gap probability, the spectral properties (such as single scgfarefore often vary between stands.

tering albedo of leaves) of the canopy elements, their angulargccessful retrievals of canopy structure from canopy lidar

orientations, and the spectral properties of the ground.

B. Retrieving Gap Probability and Apparent Foliage Profile

data have been achieved using the above methods by assuming
that /,,;,,(z) can be identified as the vertical profile of vertical
projections of foliage elements, or the profile of vertical foliage

As shown in the basic lidar equations, the laser energy retuarga density. However, as observed by a number of authors, (4)

can be directly related to the gap probabillyz). In practice,

can only give us an “apparent” foliage profile which will differ

the broadened laser beam is attenuated and reflected by foliigen the actual vertical foliage area density. The question is
elements at different heights and provides us with the meangherefore: how well does the apparent foliage profile match with
estimateP(z) from the recorded waveform. With a knowledgehe actual foliage profile? Some factors in this difference are
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the foliage orientation and canopy clumping. Different level&lumping” resolves to the dispersion of individuals within and

of clumping exist in different types of forests. In these casesetween the elements of the hierarchy.

how different is the apparent foliage profile from the actual fo- Itis generally assumed that the centers of the phyto-elements

liage profile? In what situations does the apparent foliage prare distributed with a Poisson point process that is homogeneous

file match the actual foliage profile? Will a biased foliage profilén the horizontal direction. Vertical homogeneity is not nec-

lead to biased biomass retrieval? To answer the above questi@ssary or desirable since leaf density varies significantly with

models describing gap probability by 3-D canopy structure pheight in crops, grasslands, and forests. The independence prop-

rameters for different spatially arranged plant canopies, are pegties of the Poisson are retained between layers that are thick

sented next. enough for phyto-elements to be essentially only in one layer.
This creates the need to assume small phyto-elements if differ-

IIl. CANOPY STRUCTURE AND GAP PROBABILITY MoDELs  €ntial equation models are to be used.
Random and clumped dispersions (e.g., natural stands)

~ The directional gap probability function for a canopy is desre often isotropic. In this case, the gap probability is only a
fined as the probability of incoming beams at incident zeniffyction of the incident zenith angle in addition to height, and
angled; and azimuth angl; reaching a given point located atig \yritten asP(z, 6;). We only focus on the canopies with

a certain height in the canopy without being scattered. Itis dgytropic random and clumped dispersions since these represent

noted P(z, 6;, ¢;). The gap probability is the key concept fory e a5 that lidar has been applied to. The clumped dispersion is
modeling lidar waveforms as it links canopy structure with thgic called a “discontinuous” plant canopy.

lidar waveforms through the lidar equation. The simplest case for random and clumped canopies is that
of a single-species and single-layered canopy. However, mul-
A. Canopy Structure tispecies and multilayered plant canopies are also common in

The attenuation of laser beam irradiance passing througlieality. Here we only examine single-species and single-lay-
canopy is directly affected by the density, size, and distrib@red canopies. A more general gap probability model for mul-
tion (horizontal and vertical) of foliage and woody elementéspecies and multilayered plant canopies will be presented in a
within the canopy, as well as spectral and roughness properg@parate study, but we will explain how the single-species and
of leaves, wood elements, and the surface beneath the cangjiigle-layered models can be extended to multispecies and mul-
In general, the basic foliage and woody elements are assurfiiyered cases.
to be relatively small with area volume density (sum of areas of
elements with “centers” in unit volume) and orientation volumB. Horizontally Homogeneous Canopies

density (distribution function of elements with centers in unit g5, 5 horizontally random plant canopy, assuR(e, 6;) is
volume) that may vary vertically or horizontally. . the gap probabilityF,(z) is the foliage area volume density
From the study of point patterns, which reside with the dispe&th 3 unit ofm?/m?, defined as foliage area per unit volume.
sion of the centers of the objects, [10] and [30] suggested thrpg(z) is a function of height, and is the actual foliage pro-
dispersions to describe the distribution of the centers of the iz or a single-species horizontally random plant canopy. For
liage and woody elements: regular (e.g., plantation) or semi-regs|tispecies and multilayered plant canopy, the actual foliage
ular (e.g., row crops), random, and clumped (or clustered). profile is the summation o, () for different speciesi(z, 6;)
The “random” or Poisson point process is generally the nyll the |eaf area projection factor, which is defined as the pro-
hypothesis where there is an equal probability of finding apla@ction of a unit foliage area at the incident zenith angle
at any location with an equal probability. If the point pattern i§nio a plane perpendicular to the direction of beam travel [30].

more clustered than the Poisson case, then variance is higher ) is a property of the foliage elements in addition to area
than the mean, the distribution of the individuals in subsets is

broader and the distances from individuals to near neighbors are % uniformly random leaf orientation

lower than from arbitrary points. The opposite cases indicate cos B: horizontal leaf orientation

that individuals are dispersed more regularly than “random. (2, 6;) = 9 ‘

The distribution generated by the point process is called sta- — sin@; vertical leaf orientation.

tionary if it is independent of arbitrary translations of the origin T (25)

and isotropic if it is invariant under the arbitrary rotation about The gap probability for a single-species and single-layered
the origin. Stationary is often called “homogeneity.” horizontally homogeneous plant canopy is derived as follows

Processes can be stationary (homogeneous) in given dirgee Fig. 1)
tions in planes and not in other directions and isotropic in planes

without being isotropic in the whole space. Note, however, that P(z+ Az, 6;) — P(z, 6;)
a process can be stationary and isotropic, but still have spa- ’ ’ Az
tial dependence and correlation that may lead to clustering and = Pz + Az, 0;)G(z, 6:)Fa(z) (26)

clumping of the points in the space.
Jupp [10] notes that the dispersion is scale-dependent alenA» approaches zero, and using the definitiodpf,
can be hierarchical with objects being composed of smaller ob-
jects and themselves having size, shape, orientation and disper- dlog P(z,6;) G(z,0,)F,(2)
sion. By using a hierarchical model the focus of issues such as Fapp(2, 0i) = dz - cos 6; (@7)
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* Identical trees of ellipsoid shape with horizontal and ver-
tical crown radiik andb are randomly distributed in space

8 with crown count density, the center of the crowns is at
\ 22 a single height
2
5 z—h 2z — hl
P(z1A7) a2 Foes(2) = MR <1 — <T> ) T <1
P(z)
otherwise.

7

The vertically projected actual foliage profile is the
2 product of G(z, 0) and F, ().
« Identical trees with ellipsoid shape, with horizontal and
Fig. 1. Diagram for light attenuation in a horizontally homogeneous plant vertical crown radiiR and b, are randomly distributed

canopy- in space with crown count density. The center of the
crowns is uniformly located between height and h.
and LFoa(z)isiifho —b < hy + 0
#2 dZ . 2
P(z, 6;) = exp <— / Q(z, 6;)Fo(2) ) @8 (gt )+ 2b—2)
= CcOs 91 o T 1 3b2(h2 _ hl) ’
At the nadir case hi —b<z<hy—5
362 —(ha —h1)? =3(z —ha)(z— h
Fuppl) =Gz, 0)Fa(2) @9) | Apunpr2 =2 l) 0 Eoha)E=l),
.
P(z) = exp <—/ G(z, O)Fa(z)dz> . (30) hg=b<z<hi+b
| 4 | _ N (hy — # +2b)2(2b + 2 — ha) ’
The apparent foliage profil&,,,(z) is thus different from 302(hy — hy)
the actual foliage profilé,..(z) = F,(z), in this case, by the hM+b<z<hy+0b
leaf area projection facta®(z, 0). L0, oth?rw;se.
34
C. Discontinuous Plant Canopies Otherwise
As a means of modeling the clustering of foliage into tree ( (z4+b—h1)?(h1 +2b— 2)
; : . : \F,mR?
crowns while still retaining the useful results obtained from a 362(hy — hy) ’
random dispersion, it is possible to consider that the foliage el-
. ) ) hi—b<2<h{+b
ements are dispersed in the volumes defined by the crowns and 4 b
the crowns are dispersed as discrete objects. A, mR2 = ,
To derive the actual foliage profile for such plant canopies, 3 hy = Iy (35)
assume first that we have uniform trees randomly distributed| 71 +b<z<ha—b
horizontally and with varying crown density vertically (h) N1 R2 (ha — 2+ b)2(2b+ 2 — hy)
is the vertical crown density distribution function in a unit of alt it 302(hy — h1) ’
m~2, andh is the_ height at crown centeﬁs‘.(h,_z) is the mean ho—b<z<hy+b
crown cross-section area at heigtbr trees with crown center otherwise.
height ath. With the foliage area volume densify;, the actual ’
foliage profile can be written as 1) Gap Probability for Single-Species and Single-Layered
I Discontinuous CanopiesFor natural vegetation the different
Fou(2) = / Py(h)E,S(h, 2) dh. (31) levels of clumping lead to a nonrandom dispersion of canopy
hy elements. The clumping of leaves into crowns creates a nonuni-

F . ith th . h h form distribution of canopy gaps. Some proportion of the laser
or canopies with more than one Species, Where each Spegies,, pass through the canopy without passing through

has its own parameters, and assuming the different species #09 crowns [i.e., between-crown gagd(n — 0) as shown
layers gre mdepend?nt, tr;?hactual TO""?‘gfe proI!Ie can be %'Fig. 2], while another proportion may pass through crowns
pressed as a summation ot the Species information without being scattered [within-crown gag¥,n > 0) as shown
. p in Fig. 2]. The total canopy gap probability includes between-
Fact(2) = z; Fac(i, 2) 32)  crown and within-crown gap probability.

In the GORT model, the discontinuous canopy layer is mod-
where F,..(¢, z) is the actual foliage profile at height for eled as an assemblage of randomly distributed tree crowns of el-
species. lipsoidal shape, with a mean value of horizontal crown radius

For the following two simple single-species and single-layand a mean value of vertical crown radiasd centers distributed
ered cases, the actual foliage profile can be determined exaatlyiformly between heights; and/.z, whereh; andhs are the
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examining Fig. 3. Above the height; + h2)/2, the between-

crown gap probability?(n = 0, z) decreases because of the

increase of crown width. At heiglik, +42)/2, the crown width
reaches a maximum améd(n = 0, z) approaches a minimum

_—% value at heighth, + h2)/2, constant at < (hy + hs)/2.

%, =il ' As the beam penetrates into crowfi§n > 0, z) increases,

h reaches a peak value, and then decreases. The proportion of in-
coming beam entering the crowns in a very thin layer at height
zis(dP(n =0, z)/dz). The integrated laser beam entering the
crown from canopy top to heightis 1 — P(n = 0, z). Part of
the beam passing through the crown without hitting any crown
elements forms the within-crown gap probabiliyn > 0, z).

Fig. 2. Between-crownP(n = 0) and within-crownP(n > 0) gap  P(pn > 0, z) is almost zero at the top of the the canopy, since the

probabilities. integrated dP(n = 0, z)/dz) is small. As the laser beam pen-

etrates into canopies, integratetP(n = 0, z)/dz) increases,
lower and upper bounds of crown center heights the stem P(n > 0, z) also increases. Meanwhile as the beams pene-
countdensityinm?. The crown shape paramet¢zisassumed trate, an exponential decay of the beam inside crowns—a hor-
constant for any species. For example, our field measuremeatintally-homogeneous medium—also lessens the increase of
showthab/ R is 3.5 for old jack pine forests and 2.9 for old blackP(n > 0, z). Until at a certain level abovéh, + h2)/2, the
spruce forests in central Canada [22]. For shrublands in the Jaetor of the exponential decay becomes the controlling factor,
nada site in Central New Mexicd/ R is very close to 1 [27]. andP(n > 0, z) decreases. The summation of between-crown

Within each single crown, the foliage and branches can be ugap probability,P(n = 0, z) and within-crown gap probability,

formly distributed or nonrandomly distributed, for example, th&(n > 0, =) forms the sigmoid shape of total canopy gap prob-

horizontal whorl branch structure [22]. ability.

The between-crown gap probabilif§(n = 0|z, 6;) is de- The middle two plots in Fig. 4 show the vertical profile of
fined as the proportion of beams at incident zenith afigteat dP(z)/dz, which is linearly related to the laser waveform by
reaches a point located at heightvithout passing through any the volume scattering coefficient. A peak value is shown in
crowns (i.e.n = 0). The between-crown gap probability washe upper part of the canopy layer. The bottom two plots in
modeled using the Boolean Model [32] of mathematical moFig. 4 show the apparent foliage profile retrieved by taking the
phology, which consists of random sets with centers that degarithmic transformation of gap probability. Because of the
Poisson distributed. clumping effect, the actual total gap probability for discontin-

The within-crown gap probability?(n > 0|z, 6;) is de- uous plant canopies is larger than the one for horizontally ho-
fined as the proportion of the laser beam passing throughmabgeneous plant canopies. This leads to an apparent foliage that
least one crown without being scattered. The calculation of tieeless than the actual foliage profile.
within-crown gap probability is complex. The within-crown gap In summary, two factors contribute to the deviation of ap-
probability is modeled by the summation of the probabilities gfarent foliage profile from the actual one. One factor is the leaf
the laser beam passing througte, 3. .., » crowns. To model orientation, and the other is the clumping effect for natural veg-
the gap probability of a laser beam passing throngtrowns, etation. For a horizontally homogeneous canopy, only leaf ori-
the GORT model calculates the location where the laser beagmation causes the difference. For natural vegetation, both fac-
enter crowns and the within-crown pathlength for each crowtors are involved. We have shown that as a means to interpret
A detailed description of the gap probability calculation can ltée data, the gap probability can be directly retrieved from the
found in [35] and [22]. lidar return with the knowledge @f, / p,. However, the relation-

For illustrative purposes, the gap probabilities for two scership between the gap probability and the actual foliage profile
A and B (see Fig. 3), were calculated using the GORT modébr natural vegetation is complex. Unless we can separate the
The tree geometry parameters for the GORT model are shobatween-crown and within-crown gap probability, the actual fo-
in Table I. Fig. 4 shows the modeled vertical distributions of gdfage profile can not be directly retrieved from lidar data.
probabilities, waveforms, and retrieved apparent foliage pro-2) Gap Probability for Multispecies and Multilayered
files. Discontinuous CanopiesFor many forest stands, for example

The top two plots in Fig. 4 show the modeled total gap prolbhose in the tropics, a multilayered and multispecies model is
ability as a function of height using the GORT model. The totaéquired. The gap probability for multispecies and multilayered
gap probabilityP(z) includes the between-crown gap probadiscrete canopies can be very complex. Here we show how
bility P(n = 0, z) and the within-crown gap probabilif§(n > we can extend the single-species and single-layered model
0, z), which are also shown in Fig. 4. The total gap probabilitto multispecies and multilayered model. Two canopies with
from the GORT model has a sigmoid shape. single-layer and single species, have been chosen, one is the

The between-crown gap probabilify(n = 0, z) shows a conifer forest, the other is a broadleaf forest. Fig. 4 shows the
quick exponential decay in the upper part of the canopy. In theodeled gap probability?(z), dP/d= for the conifer forest
lower part of the canopy, the between-crown gap probabilitysing the GORT model. Fig. 5 (left column) shows the modeled
P(n = 0, 2) is almost constant. This can be understood lyap probabilityP(z) and dP/dz for a single layer broadleaf

i
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Fig. 3. Two cases of canopy structure. (a) Trees of different size randomly distributed in space with the crown centers located: at’hgigfit) Trees of
different size randomly distributed in space with the crown centers located between/heagidh .. The lower and upper boundary are at heightindz-.

TABLE |
INPUT TREE GEOMETRY PARAMETERS FOR THEGORT MODEL
FOR CASESA AND B SIMULATIONS

The two-layered forest stand is constructed as follows. The
conifer forest trees as used in Fig. 4 are located at the lower
layer, and the broadleaf forest trees, as shown earlier, are lo-

1

scene R(m) b(m) M-Ly) hi(m) he(m) Fu(l/m) cated in the upper part of the canopy. If the tree distributions
= of these two species are independent of each other, the mod-
A 12 36 024 8 8 0.44 - .
eled gap probability, waveform, and the retrieved apparent fo-
B 12 36 024 6 12 0.44

liage profile using the GORT model are shown in the right-hand

column of Fig. 5. Two peaks appear in the laser waveform and

forest using the GORT model. The tree geometry parameténs apparent foliage profile. For this two-layered forest stand,
from tropical forests, in La Selva, are used [15] (see Table Il)the two species are independent of each other. The simulation
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Fig. 4. Modeled vertical distribution of the gap probabilitie$z) (solid line) [including between-crown gap probability(» = 0, z) (dash-dot line), and
within-crown gap probabilityP(n > 0, z) (dashline)P(z) = P(n =0, z)+ P(n > 0, 2)], dP(z)/dz, and apparent foliage distributioft] log(P(z))/d=),
using the GORT model. The parameters used for case A and B are listed in Table I.

of the gap probability is straightforward. Simple multiplicatiorand to clarify their role in global climate change [33]. During
of the two gap probabilities for the two species will do. In rethe BOREAS summer field campaign of 1996, SLICER was de-
ality, due to ecological competition, the vertical distribution oployed on the NASA Wallops Flight Facility C-130 to measure
different species may not be independent of each other. the vertical structure of boreal forests and the topography of the
underlying ground surface.
V. MODEL VALIDATION During the field campaign, intensive field measurements of
tree geometry parameters [2], [22], the spectral properties of
opy elements [17], and the spectral properties of ground
were conducted. These ground measurements at four super
udy sites of BOREAS (Table IlI) were used to drive gap prob-
ability models.

) A few concerns about the inputs need to be addressed. First,
A. SLICER Data from BOREAS Site these measurements were conducted during the summer field
BOREAS is a large-scale interdisciplinary experiment in celcampaign of 1994, but the SLICER data were collected during
tral Canada focusing on improving our understanding of the ithe summer field campaign of 1996. In this study, we ignore the
teractions between the boreal forest biome and the atmosphemall dynamic tree growth during the two-year period. Second,

To access the performance of modeling the laser wavefor
using the gap probability models presented above, we comp
the model predictions with the SLICER data collected duri
the field campaign of BOREAS.
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TABLE 1 TABLE IV
INPUT TREE GEOMETRY PARAMETERS FOR THEGORT MODEL TREE PARAMETER MEASUREMENTS BY[2]
IN A BROADLEAF FOREST STAND

site  age (yr) tree ht. (m) density(Z%)

site R(m) b(m) )\(m—lg) hi(m) hao(m) Fu(1/m)

SOJP 60-75 12-15 0.16-0.24
broadleaf 3.0 3.5 0.04 17 21 0.5
SOBS  0-155 0-11 0.37-0.44
NOJP  50-65 9-13.5 0.13-0.26
TABLE 1l NOBS  79-90 9-12 0.115-0.87

INPUT TREE GEOMETRY PARAMETERS FOR THEGORT MODEL IN THE FOUR
CONIFER FOREST STANDS . . .
observed differences in the spectral properties between these

site  R(m) bm) AGk) M(s) hlm) ho(m) F(l/m) w  w, two wavelengths [30], especially for conifer forests [5]. Third,
SOBS 0.76 265 0405 0074 303 85 0.87 0.8 0.303 the upper bound of tree crown centégss closely related to the

SOJP 12 35 020 0040 77 127 041 08 033 tree height. As indicated in Chen’s measurements (Table 1V),
NOBS 1.0 35 024 0037 55 120 044 08 0317 the trees in the NOJP site are taller than those at the NOBS site.
NOJP 1.0 30 020 0061 68 101 044 08 0295 But our SLICER waveforms show the opposite (see Fig. 7). The
value of h, for the NOBS site in Table Ill was therefore esti-
mated from the SLICER waveform rather than Chen’s measure-
the spectral properties of canopy elements and the backgrouménts. We believe the SLICER height measurements are more
as shown in Table Ill, are at 0,2m. We use them at 1.06m accurate since Chen’s measurement may have been conducted
which is the SLICER laser beam wavelength because of smadi a slightly different site. In the future, height derived directly
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Fig.6. Modeled vertical distribution of the gap probabilRy =), waveformd P(z)/dz, and apparent foliage profilel log(P(z))/dz) for clumped forests (solid

lines) and the horizontally homogeneous forests (dashed line). Four conifer forest stands of central Canada are used to represent the ciufipethieesi

a horizontally homogeneous canopy layer for the four conifer forests, the foliage elements within each thin layer are assumed to be horizbntatiyvdisin

each thin layer. The actual foliage profile for clumped forests and nonclumped forests are the same. SOBS: old black spruce forest stand im shipsositindy

site of BOREAS. SOJP: old jack pine forest stand in the southern super study site of BOREAS. NOBS: old black spruce forest stand in the northely super stu
site of BOREAS. NOJP: old old jack pine forest stand in the northern super study site of BOREAS. SOBS, SOJP, NOBS, and NOJP are with the same meanings
in the following plots. It can be seen that the assumption of horizontally homogeneous plant canopies leads to underestimation of foliagg.area densit

from the laser data can be embedded in the inversion algorititlamped and no-clumped forest stands show a sigmoid shape.
to reduce the uncertainty in the inversion outputs. But the ones for clumped forests are much larger than the non-
clumped case. The largest difference is shown in the SOBS site,
where the tree crowns and the foliage areas within crowns are
the densest. The least difference is shown in the NOBS site,
Using the inputs provided in Table Ill, the GORT model wag/here the trees are the most sparsely distributed. Although there
run to model gap probability for the four conifer forest stand$s not much difference in the tree shape, size, density for the
Fig. 6 shows the modeled vertical distribution of gap probabilityOBS and NOJP sites, the trees are much more widely dis-
P(z), dP(z)/dz, and apparent foliage profiltlog(P(z))/dz tributed in the vertical direction at the NOBS site than at the
in the SOBS, SOJP, NOBS, and NOJP sites. For comparistéNQJP site.
horizontally homogeneous (no-clumped) forest stands are mad&@he middle column in Fig. 6 shows the modetéH(z)/dx.
up as if they had the same foliage profile as the four BOREASpeak value is shown for all waveforms. The peak value seems
super sites, but the foliage were randomly distributed horizolecated at a higher level for the nonclumped case than for the
tally. The actual vertical foliage profile is calculated using (343lumped forests. But the difference is not great. The peak values
and (35). of the waveforms for the nonclumped cases are always larger
The first column in Fig. 6 shows the modeled gap probabilhan those for the clumped cases. The difference is greatest at
ities in the four super sites. The gap probabilities in both thhe SOBS site and least at the NOBS site. This indicates that

B. Model Predictions
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Fig. 7. Comparison of the modeled waveforms from the GORT model (thick-dashed lines) with the SLICER measurements (solid lines) in four conifer fores
stands of central Canada.

the nonclumped forest stands lead to higher values of foliagenvolution of an ideal impulse (zero width) laser pulse with a
profiles. Rayleigh distribution of finite width, the modeled waveforms
The rightmost column in Fig. 6 shows the retrieved apparewere also convoluted with a Rayleigh distribution of finite
foliage profile using a simple logarithmic transformation of thavidth. Good agreements between the modeled and measured
gap probability. If we assume the leaf area projection factor is@waveforms are observed in Fig. 7.
the deviation of the apparent foliage profile for clumped forests The modeled gap probabilities and the retrieved gap proba-
from the one for nonclumped cases is the error of foliage profitglities from SLICER data are shown in Fig. 8. The modeled
retrieval arising from using the logarithmic transformation angap probabilities are close to the retrieved gap probabilities. In
ignoring the clumping effect for natural vegetation. The errdhis study, we assume randomly oriented leaves, and the ratios
is largest at the SOBS site, where the trees are most dens#ly, /p, are close to one in each case [see (17) and Table IlI for
distributed. This shows that clumping still exists in some densige spectral properties of leaves and background].
forests, which cannot be directly treated as horizontally homo-Figs. 7 and 8 also show that even within one forest stand site,
geneous plant canopies for the retrieval of vertical foliage prite waveforms and the gap probabilities are not uniform. One
file. waveform or gap probability deviates from others at the SOBS
site. This might be due to different tree densities or different
values ofp, /p, at one forest stand or due to natural spatial
variation in the sensing. The gap probabilities in the SOJP and
1) Waveform and Gap Probability Comparisoiirig. 7 the NOBS sites also do not have a uniform sigmoid shape. This
shows the comparison between the modeled waveforms anight be the effect of different tree heights in the same forest
the measurements from SLICER data at the four super stugt@gnd or (again) simply spatial variation from sample to sample
sites of BOREAS. The values of the waveforms from SLICERithin a stand. Accounting for this variation will be important
data are digitized counts density (digitized counts per unit future work.
height) normalized by the total digitized counts. The values of Figs. 7 and 8 also show four different patterns in the modeled
the waveforms predicted from the model are also normalizeadd SLICER-measured waveforms at the four super sites of
by the total laser energy return. Because of SLICER data arB@REAS. Different tree heights in the four sites are the most

C. Model Comparison with SLICER Data
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o 15 distributionfromthe center ofthe footprinttothe edge. The quoted
g|  SOBS N “footprint” of SLICER, for example, [9] is the width to the point

6 10 V4 where the power falls to—2 of its center level.

A narrow width of this Gaussian distribution of the laser pulse
4 e inspace leadsto a small effective footprint size with a consequent
> i o increase in spatial variance of the data. A small footprint, cen-
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0 n timeters to several meters in diameter, may have just one signal

2 04 06 08 1.0 02 04 06 08 1.0
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returning from the first scattering event, with considerable atten-
uation for the remaining beam. For small spot sizes, the signal
also often penetrates gaps in the canopy to give a clean, unatten-
uated and distinct surface background signal even with a signif-
icant overstory of trees. This is an advantage when the objective
is terrain mapping. However, the disadvantage of the small foot-
8 NOJP J print size for canopy lidar is that the gap probability can not be
,,”/ inferred except from a large number of samples. The spatial vari-
6 18 ance of returns may be so high that very large volumes of data will
4 v be needed to infer stable canopy parameters.
o 2 i A large footprint size allows relatively stable estimates of the
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0 b NN foliage profile and the gap probability function to be derived
0.2 0.4 06 08 1.0 2 04 06 08 1.0 for each lidar pulse with an optimum spot size dependent on
gap probability gap probability the canopy clump size and mapping scale and objectives. The
spot size therefore might be varied as a function of land cover.
Fig. 8. Comparison of the modeled gap probabilities from the GORT modHithe spot size is too large, however, the return signals becomes
(solid lines) with the SLICER measurements (dashed lines) infourconiferfor(%ftheterogene(-_)uS mixture. The 10-15 m footprint for SLICER
stands of central Canada. . . .
and 25 m for LVIS/VCL are ideal for canopy applications since
they match the tree stand scale. But the trade-off for large foot-
apparent. Different foliage profiles are also shown. Our expefirint size is that the signal from ground becomes mixed with
ence of processing the SLICER data tells us that the waveforthe signal from canopy. This signal from ground can change its
are very sensitive to the tree geometry parameters. Within asteape depending on micro-relief, slope and near surface corner
SLICER flight for the same super site, the waveforms changeflections. However, provided this variation is not dominant,
dramatically. Laser waveforms are thus able to retrieve thlee GORT model presented here is well suited for interpreting
spatial variability of vertical structure above the land surfacédar remote sensing data with a large footprint size.
The agreement of the model prediction of the waveforms with Fortunately, the spatial variation introduced by the interaction
the SLICER data in the four super sites indicates that the GORfthe cover with the lidar footprint can also be modeled with the
model also catches the horizontal spatial variability of th@ ORT model (see [25]) allowing the effects of footprint size to
canopy structure on the laser waveforms. Possibly, with soine quantified and creating the potential to use the variation to
effort, the GORT model can be inverted to retrieve the spatiafer canopy parameters.
variability of the tree geometry parameters such as tree density8) Sensitivity of Gap Probability and Apparent Foliage Pro-
or vertical foliage profile within a stand from lidar data. file to p,,/pg: For further analysis of the sensitivity of the re-
2) Pulse Width and Footprint Size Effects on th&ieved gap probability, apparent foliage profile, and relative ap-
Data: Canopy lidars generally have a finite pulse widthparent foliage profile to the ratio qf,/p,, Fig. 9 shows one
Its shape is part of the instrument design being a Rayleigh $i.ICER waveform from each supersite, the retrieved gap prob-
the case of SLICER and a Gaussian in the case of LVIS aadility and apparent foliage profile with three values (0.75, 1,
VCL. This effects the distribution of power across the footprinand 1.5) ofp,,/p,. A smaller value of.,/p, leads to a smaller
and this must be taken into account. gap probability, and to larger values of the apparent foliage pro-
Our experience with the Rayleigh or Gaussian smoothing file. A large difference can be seen in the retrieved gap proba-
the laser pulse shows that the smoothing operation of the pufsiifies and the apparent foliage profiles when we use different
does not damage the foliage profile interpretations, but rathelues ofp, /p,. Note that the amplifiez, /R,,(0) also affects
usually improves retrievals through its smoothing action. Hovihe sensitivity of the retrieved gap probability and apparent fo-
ever the main problem is the mixing of near ground foliage réiage profile top.,/p,. Larger values o2,/ R,,(0) amplify the
turns and the ground return. SLICER has a broad pulse so isgnsitivity top.,/p,. Fig. 9 also shows that the relative foliage
hard to distinguish real foliage effects near the ground from tixofile is not sensitive to the value of,/p,,.
ground pulse. It is therefore important either to fully “decon- Using our previous results it may be shown that the total pro-
volve” the effects of the pulse shape and width from the dajected cover estimate at the ground is
or unmix the ground effect from the vegetation data. Both ap-
proaches are useful but will not be discussed further here. 1
o . . Cover(0) = ————. (36)
Thedistribution of laser power over the footprintis notuniform pv By

but normally follows the TEM0OO mode which follows a Gaussian 1+ p_g R,(0)
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Fig. 9. Effect of the ratio of volume backscattering coefficient of vegetation and background on the retrieval of gap probability and appaequiofidkaig
the four BOREAS super-sites. The SLICER waveforms are shown in column one, the retrieved gap probabilities in column two (dashed, dashedpsolid lines

the ratios 1.5,1, and 0.75), and the retrieved apparent foliage profiles (APF) and relative APFs in column three and four (dashed, dashediostiil lates
1.5, 1, and 0.75).

This shows that the main effect of a poor estimate in the ratiorangements of canopy elements using a modeling approach.

is to change the overall cover estimate. The effect of clumping of canopy elements, which occurs for
most natural vegetation, on lidar waveforms and the foliage
V. CONCLUSIONS profile retrieval was studied using a geometric optical and

radiative transfer model. Larger gap probability is observed

Lidar measurements of vegetation canopy have a great for discontinuous plant canopies because of the clumping of
tential for characterizing vertical canopy structure. This studgaves into crowns compared to horizontally homogeneous
has explored the relationship between the laser waveforplant canopies. This clumping also generates smaller laser
returned from plant canopies and vertical canopy structuneveforms from above-ground foliage and woody elements
parameters and how this relationship is affected by the spatald a larger laser return from the ground for discontinuous
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plant canopies than horizontally homogeneous plant canopies
with the same amount of foliage. Not accounting for the effect
of clumping, the vertical foliage area density and the biomass
for discontinuous plant canopies will therefore be undere
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The GORT model was validated against independently m
sured field data using SLICER lidar data collected in conifed'o
forest stands in Central Canada with good accuracy. The mode
validation shows that the GORT model is able to characterize
the lidar waveform using a few tree geometry parameters, the
spectral properties of canopy leaves, and the ground albedo. "

Due to the clumping of leaves into crowns for natural vegeta-
tion, only the gap probability and apparent vertically projected
foliage profile can be directly retrieved from the canopy lidar 2
return. To achieve accuracy in such retrievals, a sensitive param-
eter: the ratio of the backscattering coefficient of the vegetation
and the ground, which is a function of the leaf orientation factor, 3
the spectral properties of the leaf and the ground, must be ob-
tained independently. A sparse canopy and bright background¥
reflectance will cause the retrieval to be most sensitive to the
ratio.

The apparent foliage profile is generally different from the (5]
actual foliage profile. The difference is dependent on the leaf
orientation factor and the clumping of vegetation. For horizon-
tally homogeneous plant canopies, the actual foliage profile car{%
be calculated by the ratio of the apparent foliage profile and the
leaf orientation factor at nadir. For natural vegetation, besided8]
the effect of the leaf orientation factor, the clumping of foliage
into crowns leads to larger gap probability, and the values of the
apparent foliage profile are smaller than the actual foliage pro-[°]
file; in other words, there is “hidden biomass.”

For the possible retrieval of the actual foliage profiles and so
biomass, suggestions are described as follows.

* Invert the GORT model to retrieve the tree density and fo—[lO]
liage area volume density within crowns using lidar data
first and calculate the actual foliage profile from the re-[11]
trieved tree structure parameters. Some directly retrieved
tree geometry parameters (such as tree height) from the
laser returns can be used in the inversion to reduce the un-
certainty of the inversion results. [12]
» Make use of the spatial variance of the laser return. Devel-
oping a model for the vertical profile of spatial variance of
gap probability can help us understand the spatial informalt2]
tion of the laser returns. The spatial variation information
provides us additional information on the canopy struc-
ture. [14]
« Combine multiangular lidar measurements with nadir;s
measurements. This may also provide us a way to re-
trieve directly the actual foliage profile, and especially
the angular foliage distribution. A clumping index as a
function of incident zenith angle is under development,
which may link the apparent foliage profiles at different
laser incident directions and the actual foliage profile.

[16]

[17]

These paths will be further explored in future work.
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