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A B S T R A C T

A thorough evaluation of the capability of modeling vegetation lidar returns is a critical aspect of deriving
vegetation structure from lidar measurements. This study assesses the performance of the Analytical Clumped
Two-Stream (ACTS) canopy radiative transfer model to simulate large-footprint lidar waveforms. Modeled lidar
waveforms were compared to airborne Laser Vegetation Imaging Sensor (LVIS) data collected in deciduous and
conifer forests: Harvard Forest, MA; Bartlett Experimental Forest, NH; and Howland Experimental Forest, ME.
The simulated and LVIS lidar waveforms have coefficients of determination R2 > 0.9 and RMSE ~ 0.01 at both
plot and stand level for most sites. The ACTS model also produces realistic multi-peak returns from vegetation for
the multi-layer and multi-species canopies with R2 ~ 0.79–0.86 and RMSE ~ 0.01 between the simulated and
LVIS waveforms. This validation work lays the foundation to retrieve vegetation structure and above-ground
biomass directly from lidar waveforms through model inversion with the ACTS model.

1. Introduction

Vegetation structure plays a critical role in ecosystem processes,
habitat and biodiversity (Spies, 1998). Vertical foliage distribution
controls the amount of radiation absorbed by vegetation for photo-
synthesis and conductance and is linked to wildlife habitats and species
diversity (Goetz et al., 2007). Horizontal distribution of canopy ele-
ments and gaps aids tree regeneration and understory development.
Crown shape and size distribution and densities are indicators of tree
age distributions and are related to vegetation growth and nest site
availability.

Over the last decade an advanced mechanistic model of forest
ecosystem dynamics has been developed to use explicit ecosystem
composition and structure to link ecosystem processes and functions
(Moorcroft et al., 2001). The Ecosystem Demography Biosphere (ED)
model of Moorcroft et al. (2001) took a tree size- and patch age-
structured approach to represent vegetation horizontal and vertical
heterogeneity for vegetation dynamics. Ent (Kiang et al., 2008) is the
first dynamic global terrestrial ecosystem model (DGTEM) to take the
size- and age-structured approach of ED to the global scale for coupling
with atmospheric general circulation models (AGCMs). As an advance
over ED, the Ent DGTEM introduces a canopy radiative transfer

submodel, the Analytical Clumped Two-Stream (ACTS) model (Ni-
Meister et al., 2010a; Yang et al., 2010) to calculate radiation absorp-
tion, photosynthesis, conductance and energy balance. For these
structure-based DGVM models, structure parameters such as vegetation
height, crown size, density, and vertical foliage density are the drivers
for terrestrial ecosystem carbon stocks and fluxes estimates. Correct
initialization of vegetation structure inputs for these models is critical
for improved estimates of global vegetation carbon storage and fluxes.

Vegetation structures can be obtained through several types of
measurements, such as in-situ field measurements and remote sensing
measurements including optical, radar and lidar. Field measurements of
vegetation structure are time consuming, difficult to obtain, and it is
impossible to get global coverage. Conventional optical and radar re-
mote sensing may suffer from saturation problems and shading effect on
satellite signals (Ni-Meister, 2015). In contrast, lidar directly measures
horizontal and vertical vegetation structure of ecosystems (Dubayah
and Drake, 2000). It has been recognized as the state-of-the-art remote
sensing technology for mapping vegetation structure characteristics and
aboveground biomass (AGB).

Recently, large amount lidar data ranging from large footprint
(footprint size ≥ 10 m) and small footprint (footprint size < 10 m)
have become more widely available to study vegetation structure
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characteristics. Full waveform large footprint lidar data are available at
global and regional scales. The spaceborne Geoscience Laser Altimeter
System (GLAS), part of the Ice, Cloud, and land Elevation Satellite
(ICESat) mission, provided global LiDAR data with a variable diame-
ter ~ 70 m footprint spaced at ~170 m from 2003 to 2009 (Zwally
et al., 2002; Harding and Carabajal, 2005; Lefsky et al., 2005). Airborne
full waveform data have also been collected using a Scanning Lidar
Imager of Canopies by Echo Recovery (SLICER) with a 15 m footprint
and by the Laser Vegetation Imaging Sensor (LVIS) with a 10–25 m
footprint over several large areas for improved vegetation structure
characterization (Blair et al., 1999). The future Global Ecosystems
Dynamics Investigation Lidar (GEDI) mission will provide unique 3-D
views of global vegetation structure for global carbon studies at 25 m
footprint level. Small-footprint full waveform lidar data are now used at
the operational level in forest resource inventories (Hancock et al.,
2017). Even ground-based waveform lidar systems are available to
measure complex and detailed vegetation structure over various study
sites (Jupp et al., 2009; Strahler et al., 2008). These global and regional
waveform lidar data provide detailed vegetation structure and biomass
maps necessary for terrestrial ecosystem models and global carbon
balance studies.

Waveform lidar continuously records the signal of the laser pulse as
it penetrates through the plant canopy, resulting in complete vertical
vegetation profiles. It has the potential to provide much richer 3D ca-
nopy characteristics than discrete lidar (Hancock et al., 2015, 2017) to
study ecosystem processes and biological diversity. Both spaceborne
and airborne waveform lidar has been successfully used to map

vegetation height and AGB (Drake et al., 2002a, 2002b, 2003; Lefsky
et al., 1999, 2002, 2005; Ni-Meister et al., 2010b; Rosette et al., 2008).

To fully understand the relationship between vegetation structure
details and lidar waveforms, many canopy radiative transfer models
have been adopted to simulate lidar waveforms. For example, Monte-
Carlo ray-tracing based lidar models have been used to simulate lidar
waveforms (Gastellu-Etchegorry et al., 2016; Disney et al., 2010; Sun
and Ranson, 2000; Calders et al., 2013; North et al., 2010). These
models have been used to assess sensor acquisition properties, their
sensitivity to site-specific conditions and vegetation structure accuracy
(Rosette et al., 2013; Hancock et al., 2008). Some have been inverted to
retrieve vegetation structure parameters (Bye et al., 2017).

Analytical models have also been used for lidar waveform modeling
(Sun and Ranson, 2000; Ni-Meister et al., 2001). The Geometric Op-
tical-Radiative Transfer (GORT) model was developed to describe the
interaction of three-dimensional canopy structure with the radiation
environment at the forest stand scale through merging theories from
geometric optics and radiative transfer (Li et al., 1995). GORT has been
successfully applied to model airborne and below-canopy vegetation
lidar waveforms as a function of vegetation structure parameters such
as tree size, height, stem county density, and foliage volume density
(Ni-Meister et al., 2001, 2008). These types of models provide com-
putationally efficient estimations of waveforms.

More recently, we developed a simplified GORT - Analytical
Clumped Two-Stream (ACTS) model through fusion of a two-stream
scheme with geometric optical theory to account for the effect of
hierarchical foliage clumping due to heterogeneous vegetation

Nomenclature

Roman alphabet

B(ξ) volume scattering phase function of plant canopies
b vertical crown radius
f1(t) temporal distribution of lidar pulse
f2(x,y) spatial distribution of lidar energy within a footprint
G(θ) leaf orientation function
hc crown center height
h1 the lower bound of canopy height
h2 the upper bound of canopy height
J0 beam irradiance of the lidar
L(z) accumulated leaf area index from canopy top to height z
Lt total leaf area index
Le(z.θ) effective LAI at height, z and beam incident zenith angle, θ
P(θ, z) canopy gap probability at height, z and beam zenith angle,

θ
P(z) canopy gap probability at height, z for nadir pointing laser

beam
Ρ horizontal crown radius
Rv(z) accumulated laser energy return from the canopy top to

height z
Rg laser energy return from the ground
Rv1 and Rv2 accumulated laser returns from canopy for two adjacent

lidar waveforms
Rg1 and Rg2 laser returns of background for two adjacent lidar wa-

veforms.
R2 coefficient of determination
rL leaf reflectance
tL leaf transmittance
z height in the canopy

Greek alphabet

λ stem count density

γ(θ) clumping factor
ρv volume backscattering coefficient of a canopy element
ρg backscattering coefficient of the ground
θ beam zenith angle
τ light attenuation factor in canopy (1/m)
ω single scattering albedo of leaf and ω = r + t

Acronyms and definitions

AGB above ground biomass
ACTS Analytical Clumped Two-Stream
DGTEM dynamic global terrestrial ecosystem model
Ent-DGTEM Ent dynamic global terrestrial ecosystem model
GCM Global atmospheric Circulation Model
GLAS Geoscience Laser Altimeter System
GORT geometric optical and radiative transfer
HAG-LAI LAI based on the ground lidar hinge angle measurements
HEM-LAI LAI from digital hemispherical photography
ICESat Cloud, and land Elevation Satellite
LAI leaf area index
LIC-LAI LAI using the LAI-2000 Plant Canopy Analyzer (Lic-2000)
LVIS land, vegetation, and ice sensor (LVIS)
PAR photosynthetically active radiation
REG-LAI LAI from regression of multiple angles ground lidar mea-

surements
RH25 relative height (RH) to the ground elevation at which 25%

of the accumulated full-waveform energy occurs
RH50 relative height (RH) to the ground elevation at which 50%

of the accumulated full-waveform energy occurs
RH75 relative height (RH) to the ground elevation at which 75%

of the accumulated full-waveform energy occurs
RH100 relative height (RH) to the ground elevation at which

100% of the accumulated full-waveform energy occurs
RMSE root-mean-square-error
SLICER Scanning lidar Imager of Canopies by Echo Recovery
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structure on the light environment in vegetation canopies (Ni-Meister
et al., 2010a and Yang et al., 2010). Currently, ACTS is incorporated
into the Ent Dynamic Global Terrestrial Ecosystem Model (Ent-DG-
TEM), which is imbedded in the current NASA Global Atmospheric
Circulation Models (GCMs).

New additions in ACTS include the woody component of vegetation
structure to model the interaction of ground-based lidar with vegetation
structure. It also deals with mixed and multilayer forests (Ni-Meister
et al., 2010a). Yang et al. (2011) extended ACTS to simulate lidar
waveforms, especially to study the impact of surface topography and
footprint size on waveforms. This scheme was used to retrieve vegeta-
tion height from ICESat measurements over sloping terrains with good
accuracy in deciduous forests in White Mountain, NH, and boreal for-
ests in Alaska (Lee et al., 2011 and Selkowitz et al., 2012). This model
was also used to extract canopy gap fraction (Armston et al., 2013;
Chen et al., 2014) and to retrieve vertical foliage profiles from wave-
form lidar (Tang et al., 2012, 2014). All these results suggest that ACTS
is a powerful tool to study the relationships between vegetation struc-
ture and waveform lidar returns.

The simple ACTS model was designed to describe averaged radia-
tion regime within plant canopies at the tree stand scale. They are
particularly well suited to study large-footprint lidar observations and
small footprint lidar integrated at plot levels. The inputs are distribu-
tion functions of tree geometry parameters (such as mean tree size,
shape and density) within stands/plots and the spectral properties of
canopy elements and background. These simple models will provide
unique advantages when used in inversion studies.

For ACTS to be fully valuable for inversion, a complete evaluation of
the forward ACTS model is required. The purpose of this study is to use
ACTS to simulate lidar waveforms and evaluate the capability of
modeling vegetation lidar returns. The paper is organized as following:
Section 2 describes the ACTS model in detail. Sections 3 and 4 include
validation sites, field measurements, lidar data and model inputs.
Section 5 discusses the evaluation results, and Section 6 has the con-
clusions. In Section 7, we point out recent and potential applications of
the ACTS model.

2. The physical model

2.1. The ACTS model

Like all geometric optical models, ACTS treats vegetation canopies
as assemblages of randomly distributed tree crowns of ellipsoidal shape.
It allows for multi-layered and multispecies canopies (Fig. 1). It ac-
counts for the effect of hierarchical foliage clumping due to hetero-
geneous vegetation structure on the light environment in vegetation
canopies through fusion of a two-stream scheme with geometric optical
theory (Ni-Meister et al., 2010a, 2010b; Yang et al., 2010). Compared
to previous versions of the GORT model, ACTS features (1) description
of horizontal heterogeneity by a clumping factor, and vertical hetero-
geneity by an actual foliage profile; and (2) extended multi-layer and
multi-species modeling ability.

The key feature of ACTS for vegetation lidar applications lies in its
ability to describe the interactions of the laser pulse with vegetation
structure and its fundamental capability to model vegetation gap
probability as a function of vegetation structure parameters. Canopy
gap probability or uncollided transmittance is defined as the portion of
photons passing through the gaps of the vegetation canopy without
hitting any canopy elements. In ACTS, it is calculated as an exponential
decay as a function of vertical foliage profile and a clumping factor
assuming randomly distributed ellipsoid crowns in space with a lim-
itation that they do not grow together. The expressions for the clumping
factor and foliage profiles are functions of tree size, shape and density,
and foliage area volume density for single layered or multi-layered
canopies. Canopy gap probability, P(θ, z) with height, z, and beam
zenith angle, θ is described as:
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where z is the height in the canopy, G(θ) is a leaf orientation function, L
(z) is the accumulated leaf area index from canopy top to height z,
calculated based on tree geometry inputs (Ni-Meister et al., 2001,
2010a). The factor γ(θ) is the clumping factor, which is a function of
tree geometry inputs and laser incident zenith angle, θ. τ is the at-
tenuation factor (m−1) and Lt is the total leaf area index, and the ef-
fective LAI is Le(z,θ) = L(z)γ(θ). R and b are the horizontal and vertical
crown radii. λ is the crown count density. The attenuation of light
passing through a canopy or canopy gap probability is a function of the
density, size and distribution (horizontal and vertical) of foliage and
woody elements within the canopy. As this study deals with nadir
pointing lidar, through the whole paper, P(z) is used to represent gap
probability for nadir pointing lidar, simply written as,

= − = −P z G γ L z G L z( ) exp( (0) (0) ( ) exp( (0) ( )e (2)

2.2. Lidar waveform modeling using ACTS

ACTS simulates lidar waveforms as a convolution of laser pulse
function (using a Gaussian function for large footprint lidar, Hancock
et al., 2017) and laser energy intercepted/reflected by vegetation ca-
nopy and the laser energy reflected from the background. The basic
lidar equation is described as (Ni-Meister et al., 2001; Yang et al.,
2011):
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∫ ∫= =∗ ∗ ∗( )R J ρ f x y f t P dt dx dy J ρ P( , ) ( ) (0) (0)g g g0 2 1 0 (4)

where Rv(z) is the accumulated laser energy return from the canopy top
to height z; Rg is the laser energy return from the ground; J0 is the beam
irradiance of the lidar; ρv is the volume backscattering coefficient of a
canopy element; ρg is the backscattering coefficient of the ground; f1(t)
describes the temporal distribution of lidar pulse; f2(x,y) describes the
spatial distribution of lidar energy within a footprint; f1 and f2 are both
Gaussian distributions for large footprint lidar (Hancock et al., 2017),

Fig. 1. Vertical cross section of a two-layer vegetation canopy scene showing the tree
crown with ellipsoid shape and different size and density distributed in space, vertical and
horizontal crown radii are labeled as b and r, while the height of lower and upper bounds
of crown centers are labeled as h1 and h2 for both overstory and understory layers (Ni-
Meister et al., 2010a).
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the specific parameters depend on the lidar sensor itself; P(z) is the
canopy gap probability; “*” refers to convolution computation; P∗(z) is
the convoluted P(z):
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As the laser energy returns are not calibrated, the original waveform
usually is normalized by the total digital count,
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where Rv(z), Rv(0 ), and Rg are the laser returns from the canopy top to
height z, from canopy top to ground, and from the ground return, re-
spectively; and ρv/ρg is the ratio of the volume backscattering coeffi-
cients of the vegetation and background.

The volume backscattering coefficient of a canopy volume, ρv, is a
function of the leaf angular distribution, the phase function of leaf
scattering and the spectral properties (e.g. transmittance and re-
flectance). Ni-Meister et al. (2001) provides a detailed description on
how to obtain ρv for lidar. For randomly oriented Lambertian leave

=ρ ω B ξ
4
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where ω is the single scattering albedo of the leaf and ω = rL + tL (rL is
the leaf reflectance and tL is the leaf transmittance) and B(ξ) is the
volume scattering phase function of the plant canopy. For randomly
oriented Lambertian leaves,
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where ξ is the scattering angle. For laser photon return at hotspot di-
rection, ξ= π, and

=ρ r2
3v L (10)

Soil is treated as a Lambertian surface and the backscattering
coefficient of background is the soil albedo, ρg. The canopy and back-
ground reflectivity ratio then becomes
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3. Study site and data description

3.1. Study sites

The study sites include Harvard Forest in central Massachusetts,
Bartlett Experimental Forest in north central New Hampshire, and
Howland Ecosystem Research Forest in central Maine, as shown in
Fig. 2. The sites were selected to cover regions with large spatial var-
iations of forest types and environmental conditions.

Harvard Forest lies within the transition zone of hardwoods-white
pine-hemlock, and the stands are comprised mainly of red oak (Quercus
rubra), red maple (Acer rubrum), yellow birch (Betula allleghaniensis),
white birch (B. papyrifera), beech (Fagus grandifolia), white pine (Pinus
strobus), and hemlock (Tsuga canadensis). This site was designed as a
Long Term Ecological Research (LTER) site in 1989 in Petersham, MA,
and has been used to measure CO2 and H2O exchanges between the
forest and atmosphere since then (Barford et al., 2001).

Bartlett Experimental Forest is located within the White Mountain
National Forest, a heavily forested and mountainous region in north-
central New Hampshire (Anderson et al., 2006, 2008). This site was
established by the US Forest Service in 1931 for the study of secondary
deciduous and coniferous forest dynamics and ecology. The major tree
species in this area are American beech (Fagus grandifolia), red maple
(Acer rubrum), eastern hemlock (Tsuga canadensis), sugar maple (Acer
saccharum), yellow birch (Betula alleghaniensis), paper birch (Betula
papyrifera), red spruce (Picea rubens) and balsam fir (Abies balsamea),
with some localized small stands of eastern white pine (Pinus strobus).

The Forest Ecosystem Research site in Howland, ME, is located

Fig. 2. Locations of our study sites (blue dots) in Harvard
Forest, MA, Bartlett Experimental Forest, NH, and the
Forest Ecosystem Research site in Howland, ME and sam-
pling strategies (from Ni-Meister et al., 2010a, 2010b).
Bottom right square shows the typical arrangements of
plots and ranges of 2007 field data collection strategy. Five
plots (NE, SW, SE, and NE are from four corners and CT
from the center of the stand). The plot sizes are 20 m/25 m
radius circles with 5 m geolocation accuracy. Plot centers
were taken as their observed GPS coordinates; the esti-
mated position error of the centers is about± 1.4 m. (For
interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this ar-
ticle.)
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within the Northern Experimental Forest of the International Paper CO.,
about 35 miles north of Bangor, Maine. It was established by the
University of Maine. With coverage of about 7000 ha, the site contains
an assortment of small plantations, multi-generation clearings, and
large natural forest stands. The natural stands in this boreal-northern
hardwood transitional forest are mixed, with hemlock (Tsuga), spruce
(Picea), fir (Abies), aspen (Populus) and birch (Betul) species. The region
has relatively little topographic relief, but soil drainage classes vary
greatly over short distances (Kimes et al., 2006).

3.2. Field measurements

During the 2007 summer field campaign, ground-based vegetation
structure data were collected in the three forest sites in New England
(Strahler et al., 2011). Two stands were selected for each site, in total
six stands, named as Harvard Hardwood, Harvard Hemlock, Bartlett B2,
Bartlett C2, Howland Tower, and Howland Shelterwood. Each stand
includes five circular plots with a center plot and four corner plots
35.4 m away from the center (Fig. 2), labeled as center (CT), north east
(NE), north west (NW), south east (SE) and south west (SW) respec-
tively. The only exception is the tower stand in Howland, including only
three plots (center (CT), north (NO) and south (SO)). The radius of the
circular plot is 25 m for the Harvard hardwood stand, MA and 20 m for

the rest of the stands.
For all six stands, half were dominated by conifer trees and the other

half by deciduous trees. The three conifer-dominated stands included
one hemlock stand in the Harvard Forest, and two stands (Tower and
Shelterwood) in the Howland Forest with hemlock, spruce, and white
pine as dominant species. The deciduous-dominated stands included
one hardwood stand in the Harvard Forest and both stands (B2 and C2)

Fig. 3. Sample layout. (A) Sample layout for Echidna® ground-based lidar scans. Five
scans were acquired at each site. (B) Sample layout for LAI-2000 observations and
hemispherical photographs. At each scan point, 13 LAI-2000 and hemispherical photo
measurements were acquired in the pattern shown with the scan point circled as the
starting point. Arrows indicate the walking path for the instrument operator (Zhao et al.,
2011).

Fig. 4. Spatial sampling of LVIS over field plots (grey solid circles for the plot area and
hollow circles for the estimated LVIS footprint. LVIS footprints with center within 5 m of
plot range were selected for averaging. Note: Plot centers were taken as their observed
GPS coordinates for the purpose of identifying overlapping LVIS footprints; the estimated
position error of the centers is about± 1.4 m.

Fig. 5. Sampled tree height distributions for Howland Shelterwood and Bartlett C2.
Shleterwood CT and NE plots, and Bartlett C2 SE and NE plots are treated as two-layer
canopies.
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in Bartlett Forest with, dominant species of red oak, red maple, beech,
birch and white ash. The stands/sites were selected to include different
types of mixed growth forests, and a shelterwood partly harvested ex-
ample.

In each plot, the number of trees was counted, excluding small trees
with DBH < 3 cm. LAI were measured for each plot. Within each plot
10 trees were selected by systematic sampling, and tree size (horizontal
and vertical crown radii, R and b) and tree height were measured (see
Yao et al., 2011a, 2011b for details).

LAI was measured with three instruments: the Echidna® ground-
based lidar, digital hemispherical photography, and LAI-2000 (see Zhao
et al., 2011 for details). The ground-based lidar provides two LAI
measurements: HAG-LAI based on the hinge angle (Warren-Wilson,
1963), and REG-LAI from regression of multiple angles measurements
(Jupp et al., 2009). The hinge angle method uses gap probability with
range in a band of zenith angles from 55° to 60°, where the effects of
leaf angle distribution are minimized. That is, the projected leaf areas
for common leaf angle distribution functions taken with zenith angle
tend to converge at the zenith angle of tan−1 (π/2) = 57.5° (“hinge”
angle), thus providing a view zenith angle that minimizes the effects of
leaf angle distribution (Warren-Wilson, 1963). The regression method
(Jupp et al., 2009) uses measurements of gap probability with range

averaged in 12 zenith angle rings from 5–65° and is therefore likely to
be more accurate.

LAI was also estimated based on gap probability extracted from
hemispherical photographs (HEM-LAI). The hemispherical canopy
photograph provides a commonly-used, indirect optical method to ob-
tain leaf area index and canopy transmittance based on gap fractions
derived from light attenuation within the canopy as measured by the
contrast between sky and canopy elements (Hale and Edwards, 2002).
In this study, a Nikon Coolpix 900 camera with a 180° fisheye lens
pointed toward the zenith was used at a resolution of 1391 × 1405. All
photographs were taken before sunrise or after sunset under clear sky

Table 1
Input tree geometry parameters of the ACTS model for ten plots (CT, NE, NW, SE, SW) and the averaged for the whole stand(AVE) for two Harvard Forest stands.

Stand Plot R(m) b(m) λ(m−2) h1(m) h2(m) REG-LAI HAG-LAI HEM-LAI LIC-LAI

Harvard Hardwood CT 1.81 5.49 0.073 11.70 20.14 4.42 5.41 4.03 4.58
NE 2.70 4.38 0.066 8.06 22.53 4.55 5.95 3.40 4.73
NW 1.78 4.21 0.066 5.31 20.14 4.76 5.47 3.13 4.69
SE 1.71 4.32 0.070 9.81 21.01 4.30 4.38 3.30 3.99
SW 1.99 5.37 0.063 6.32 21.86 5.02 5.65 3.47 3.86
AVE 2.00 4.77 0.068 13.20 21.84 4.61

Harvard Hemlock CT 1.31 4.24 0.081 10.02 20.30 5.16 6.47 3.87 4.67
NE 1.53 4.92 0.136 13.02 18.13 5.98 6.32 3.80 N/A
NW 2.08 4.21 0.115 12.60 19.66 5.20 6.10 3.54 2.62
SE 2.93 4.83 0.113 12.95 19.29 5.27 5.65 3.41 N/A
SW 1.97 5.01 0.103 7.34 19.69 5.37 5.77 N/A N/A
AVE 1.76 4.43 0.109 7.68 18.60 5.40

Table 2
Tree geometry inputs of the ACTS model for Bartlett and Howland Forests.

Stand Plot R(m) b(m) λ(m−2) h1(m) h2(m) REG-LAI

Bartlett B2 CT 2.62 4.43 0.110 8.50 20.76 3.92
NE 2.46 4.02 0.099 5.58 20.46 4.92
NW 2.59 4.48 0.119 8.98 20.26 6.03
SE 2.56 4.10 0.098 9.08 17.44 4.87
SW 2.52 3.11 0.092 1.54 22.16 1.40
AVE 2.57 4.10 0.103 4.04 21.07 4.92

Bartlett C2 CT 2.48 4.35 0.100 3.23 20.27 4.83
NE_upper 2.93 6.83 0.053 15.85 19.48 2.00
NE_under 3.09 3.09 0.039 9.06 12.55 2.83
NW 5.11 3.28 0.094 3.50 21.59 5.72
SE_upper 3.78 4.38 0.053 18.63 21.28 1.30
SE_under 2.90 4.38 0.042 10.25 14.18 2.08
SW 2.73 5.47 0.110 6.11 19.38 4.85
AVE 2.76 4.35 0.098 1.49 20.76 4.72

Howland Tower CT 1.74 2.93 0.222 3.29 14.58 5.49
NO 1.55 4.67 0.210 6.14 15.95 5.84
SO 1.57 2.48 0.220 6.87 15.92 4.69
AVE 1.62 3.36 0.218 5.75 15.58 5.34

Howland
Shelterwood

CT upper 2.95 6.05 0.051 7.09 17.85 3.04
CT under 1.43 1.63 0.013 2.33 3.69 0.76
NE upper 2.46 4.02 0.044 8.10 15.70 2.26
NE under 1.24 1.53 0.011 1.68 6.61 0.57
NW 2.20 3.74 0.071 3.97 16.79 6.03
SE 1.23 4.43 0.073 5.85 16.96 2.88
SW 1.96 4.20 0.061 5.18 15.59 4.55
AVE 2.05 4.20 0.064 6.98 16.38 3.74

Fig. 6. Histogram of ρv/ρg extracted from LVIS data using Eq. (11) for the six study sites.
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conditions to ensure homogeneous, shadow-free illumination of the
canopy and high contrast in the blue spectral region between the ca-
nopy and the sky. To properly sample the spatial variability over the
site, 13 hemispherical photographs were taken at a spacing of 10 m at
each plot following the sample design in Fig. 3. All digital photographs
were collected as highest-quality JPEG images and were analyzed using
HemiView software (Dynamax, Inc., Houston, TX).

The LAI-2000 instrument was also used to measure effective LAI
including clumping (Stenberg, 1996; Barclay and Trofymow, 2000)
following the same observation plan as hemispherical canopy photo-
graphs (Fig. 3) (LIC-LAI). The LAI-2000 Plant Canopy Analyzer (Li-Cor
Inc., 1992) is a portable instrument that provides LAI estimates by
measuring radiation received by a fish-eye optical sensor in five zenith
angle ranges under a forest canopy and comparing them to reference
measurements of skylight collected simultaneously or con-
temporaneously in a nearby open area. The LAI-2000 instrument de-
termines canopy light interception in five zenith bands centered at
angles of 7°, 23°, 38°, 53°, and 68°. LAI is then estimated by inversion of
measured light interception formulae. LAI-2000 LAI is effective LAI,
which contains non-leaf area and includes the effects of clumping. All
the LAI values compensate for some effects of clumping, therefore, all
the LAI values were used as effective LAI in this study.

3.3. LVIS data

The LVIS is an airborne laser altimeter system designed to collect
data on surface topography and vegetation structure (Blair et al., 1999).
The onboard laser generates Gaussian shaped optical pulses at a wa-
velength of 1064 nm. The vertical sampling resolution of LVIS is 30 cm
(1 ns) (Blair et al., 2004). LVIS footprint sizes (diameter) typically vary
between 10 and 25 m depending on the mission flight altitude. The
LVIS waveform continuously records the returned laser energy from the
canopy surface with height within the footprint, resulting in complete

vertical distribution of vegetation scattering profile (Blair et al., 1999).
In the summer of 2003, LVIS flew over some intensively studied

forest sites in New England (Blair et al., 2004). The LVIS data used in
this study were acquired on July 18–20, 2003 in Bartlett, NH, July 26,
2003 in Howland, ME, and July 20, 2003 in Harvard, MA. The field
vegetation structure data used to drive our model was collected in
2007, and thus there is a four-year gap between LVIS data and field
data. Any changes of vegetation structure within this period (vegetation
growth, cutting) could cause mismatches between LVIS and model re-
sults, which can be quite pronounced in sparse canopies (see more
detailed discussion in Section 5).

The LVIS footprint spacing over these sites was contiguous; the
center of each footprint was separated by roughly 20 m with a 25 m
footprint both across and along the flight path. LVIS samples were
overlaid with one field plot (Fig. 4). LVIS sampling density for all the
plots ranges from 3 to 19 (The exact sampling numbers for each plot can
be found in Figs. 10 and 11).

Waveforms are digitized laser energy returns, i.e. the intensity, or
the magnitude, of the return pulse at each canopy height level. In this
study, the original LVIS waveforms were normalized by the total laser
energy return to reflect the relative laser energy intensity at each
height.

To extract LVIS data for the corresponding plots, we first selected
the LVIS data with footprint centers located within a 5 m radius circle
for each plot, then averaged these LVIS data, so that the selected LVIS
observations can occupy an area slightly larger than plot range to re-
duce geolocation uncertainty (Ni-Meister et al., 2010a, 2010b).

Foliage profiles can be averaged arithmetically. However, as laser
pulse has an exponential decay when penetrating into canopies, the best
waveform averaging method is by geometric mean. Therefore, we used
the geometric mean to average for plots and stands in this study.

4. Model inputs

Based on the field measurements, two sets of ACTS inputs were
calculated: one at the plot level (a 20 or 25 m-radius circle) and the
other at the stand level (1 ha area). The inputs include canopy layer
status and tree density, tree shape (ellipsoidal) and size (horizontal and
vertical crown radii), foliage area volume density, and leaf and back-
ground spectral reflectivity for each canopy layer.

Canopy layer status was obtained based on the individual tree
height histogram (Fig. 5). If the tree height histogram shows a bimodal
pattern, then the canopy of the plot is regarded as two-layer, otherwise,
it is regarded as one-layer. Fig. 5 shows how Bartlett C2 NE and SE and
Howland Shelterwood CT and NE were identified as two-layer canopies
based on tree height distribution. Shelterwood CT and NE plots have
two distinct layers. Bartlett C2 SE plot has two distinct tall trees, se-
parated from the other trees underneath. Two smaller trees (< 5 m)
could also be separated from the middle layer. Though it could be se-
parated as a three-layer canopy in this case, we considered it as a two-

Table 3
Canopy and background reflectivity ratios in different forest stands
used for the Radiation transfer Model Inter-comparison -IV
(Widlowski et al., 2015).

Species, location ρv/ρg

Pine, Estonia 0.78
Birch, Estonia 0.74
Maple, Estonia 0.82
Birch, Estonia 0.84
Alder, Estonia 0.88
Ash, Estonia 0.93
Linden, Estonia 0.79
Norway spruce, Estonia 0.77
Aspen, Estonia 0.76
Citrus orchard, South Africa 1.06
Short rotation forest, Italy 1.00

Fig. 7. The impact of ρv/ρg for dense and sparse canopies on simu-
lated waveforms, the curves in black, red and green represent value
as 0.75, 1.0 and 1.50 respectively. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web
version of this article.)
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layer canopy due to limited tree sampling (10 per plot). The C2 NE plot
shows three top trees distinguished from the rest, and it also could be
taken as a three-layer canopy. Some other plots may show large var-
iation of tree heights, however there is no clear distinction of layering
and thus they were treated as one layer canopies. Some may have one
tall tree distinguished from the rest and were also as one-layer canopies
due to limited sampling.

4.1. Vegetation structure inputs

The input canopy geometry parameters for each layer were com-
piled based on the field canopy geometry data collected in 2007. These
parameters include horizontal crown radius R, vertical crown radius b,
stem count density λ, mean and standard deviation of crown center
height, hc, mean(hc) and std(hc) and the lower and upper bounds of
canopy height, h1 and h2, calculated as h1 = mean(hc) − std(hc) and
h2 = mean(hc) + std(hc). However due to limited sampling of ground
data, in some cases h1 and h2 were adjusted to make sure that modeled
waveform extent (h2 − h1 + 2b) matches the LVIS waveform extent.

As discussed in Section 3.2, four kinds of LAI values were used in

this study: two from the Echidna® ground-based lidar: HAG-LAI based
on the hinge angle and REG-LAI from regression of multiple angles
ground lidar measurements one from digital hemispherical photo-
graphy (HEM-LAI), and one from LAI-2000 (LIC-LAI). Harvard Hard-
wood and Harvard Hemlock plots used all four sets of LAI values, while
other plots used REG-LAI only. Table 1 lists the vegetation structure
inputs for all plots and averaged for the whole stand in Harvard Forest,
Table 2 for Bartlett and Howland Forests.

4.2. Spectral inputs

The spectral input for our model is the canopy and background
reflectivity ratio, ρv/ρg, parameterized based on leaf single scattering
albedo, leaf scattering phase function, and background albedo mea-
surements. For a randomly-oriented leaf canopy, the ratio is a function
of leaf reflectance and background albedo (Eq. (10)). We do not have
site-specific background albedo and species-specific leaf reflectance
measurements for our study sites. Because the background albedo ρg
varies from site to site and leaf reflectance also depends on species,
these measurements are not easy to acquire. The ratio is approximated

Fig. 8. Comparison of modeled waveforms and LVIS measure-
ments (solid black) with shaded grey for standard deviation in
different plots in a deciduous stand and a coniferous stand in
Harvard Forest, MA (only six plots are included to show more
detail comparison). In the modeled waveforms, four kinds of
LAI values are used: REG-LAI (red, dash), HEM-LAI (blue, dash-
dot-dot), HAG-LAI (green, dash-dot) and LIC-LAI (cyan, dot).
Only showing the R2 and RMSE values using REG-LAI. (For
interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

W. Ni-Meister et al. Remote Sensing of Environment 204 (2018) 229–243

236



as unity (1) in this study based on the analysis from two different ap-
proaches as discussed below.

Ni-Meister et al. (2010a, 2010b) proposed an approach to estimate
ρv/ρg from two adjacent lidar waveforms:

= − −ρ ρ R R R R/ ( )/( )v g v v g g1 2 2 1 (12)

where Rv and Rg are defined as the accumulated laser returns from the
canopy and from the ground in each footprint, respectively; Rv1, Rv2 and
Rg1, Rg2, are the accumulated laser returns from canopy and background
from two adjacent lidar waveforms.

Using LVIS data in each site, ρv/ρg was calculated based on Eq. (12),
and Fig. 6 shows the histogram of ρv/ρg calculated over the six stands.
The ratios are mainly centered at one for all stands except for the two
conifer stands: Harvard Hemlock and Howland Shelterwood. Here the
ratios show a slightly higher probability of being less than one. The
bimodal feature at Harvard Hardwood stand may display the different
vegetation optical properties of the dominant species, oak and birch,
given the same ground optical properties.

It is rather difficult to quantitatively evaluate the accuracy of these
values. To estimate if these values were in the right range, we used
available field measurements of leaf single scattering albedo and
background albedo measurements at 1064 nm wavelength for other
sites as reference values. We chose to use field data collected in four
forest stands acquired for the Radiation transfer Model Intercomparison
IV (RAMI-IV and the web link: http://rami-benchmark.jrc.ec.europa.
eu/HTML/RAMI-IV/RAMI-IV.php) exercise: a 124 year-old pine (Pinus
sylvestris) stand in Jarvselja, Estonia; a 49 year-old birch (Betula pen-
dula) stand in Jarvselja, Estonia; a 9 year-old citrus orchard in
Wellington, South Africa; and a Lombardy short rotation forest of po-
plar clones in Parco Ticino, Italy. Table 3 lists the values of the ratios for
different species in the above four stands. The ratio ranges from 0.77 to

1.05 over all the species across the three different countries. Conifer
species show slightly lower ratios (0.77 and 0.78) than the deciduous
species (most values larger than 0.9).

Overall, the values of the ratio calculated using Eq. (12) are similar
to the values calculated based on Eq. (11) in Table 3. To simplify the
modeling work, this study approximates the ratio as one. However
using specific ratio values derived from Eq. (12) will improve the model
result. Further, our comparison indicates that setting the ratio equal to
one is to be generally acceptable for general purpose at this wavelength.

To evaluate the uncertainty of modeled waveforms with a simple
ratio of one, we compared the modeled waveforms using three different
ρv/ρg values (0.75, 1, and 1.25) for Harvard Hemlock, a relatively
denser stand with very low ground returns in waveforms and Howland
Shelterwood, a sparse stand with strong ground returns in waveforms
(Fig. 7). For dense forest, different ratios from 0.75–1.25 result in very
little differences in the modeled waveforms. However, for sparse stands,
canopy peaks and the ground returns show quite large differences. A
larger ratio leads to larger canopy peak returns and weaker ground
returns and vice versa. This result suggests that lidar waveforms are
sensitive to the canopy and background reflective ratio for sparse ca-
nopies. An overestimated ratio often leads to overestimated canopy
peak returns and underestimated ground returns.

5. Results

5.1. Impact of different LAIs on modeled waveforms

To test the qualities of the four LAI measurements, we ran ACTS
with four different LAI measurements as inputs for the ten plots of two
Harvard stands. The modeled lidar waveforms were compared with
LVIS measurements. Fig. 8 only includes the results from six plots (three
from the Hardwood stand and three from the Hemlock stand). All the
LAI measurements were treated as a clumped LAI- effective LAI based
on the nature of the measurement itself (see discussion in Section 3.2).
The modeled and LVIS waveforms are fairly similar using the four
different LAI inputs. Fig. 8 shows the coefficient of determination (R2)
and Root-Mean-Square-Error (RMSE) using REG-LAI. The best perfor-
mance has R2 = 0.98 and RMSE = 0.0054. The worst one R2 = 0.83
and RMSE = 0.02. Fig. 9 compares the model performance using all
LAIs. In general, R2 ranges from 0.77–0.98, and RMSE 0.005–0.025.
Overall most R2 and RMSE values are scattered around the 1:1 line. The
worst RMSEs (R2 = 0.76, and RMSE = 0.025 using HAG-LAI) are
caused due to the misaligned waveforms in the Harvard Hemlock-NW
plot. Overall, the modeled waveforms using four different LAI inputs
are within the range of± one standard deviation range of LVIS wave-
forms except for Havard Hemlock-NW.

To avoid the confusion of using too many LAI inputs for the model,
only REG- LAI was used to drive ACTS in the following model simula-
tions. Modeled waveforms were compared to LVIS data at two different
scales: first at the 20 m-radius circular plot level and then at each stand
(1-ha level).

5.2. Model and LVIS waveform comparison – plot scale

5.2.1. Bartlett experimental forest, NH
Fig. 10 compares both the modeled and LVIS waveforms for all plots

at the Bartlett B2 and C2 stands. All five plots in Bartlett B2 were run
with one-layer canopy. But NE and SE plots in Bartlett C2 were in two
stories. Instead of plotting the mean and standard deviation of LVIS
waveforms, Fig. 10 includes the mean and individual LVIS waveforms
to show the complex vegetation structure characteristics.

Both observed and modeled waveforms show strong canopy returns
and weak ground returns, indicating the Bartlett Forest is a dense forest
(Schull et al., 2007). R2 for all 10 plots ranges between 0.74 and 0.98
with RMSE between 0.006 and 0.014. The Bartlett C2 NE and SE plots
are two-layer canopies. The model simulates the two expected peaks as

Fig. 9. Comparison of coefficients of determination (R2) and RMSE of the modeled wa-
veforms using REG-LAI (x-axis), HAG-LAI (y-axis, stars), HEM-LAI (y-axis, diamonds), and
LIC-LAI (y-axis, triangles) for all 10 plots.
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shown in the averaged LVIS waveforms.
Some plots show mismatches between the modeled and LVIS wa-

veforms. The Bartlett C2–NW plot has the largest RMSE = 0.016 and
least R2 = 0.74. For Bartlett C2 SE and NE plots, LVIS waveforms show
stronger understory and ground returns. Bartlett C2 SE (R2 = 0.79,
RMSE = 0.01) has two distinct LVIS waveforms, indicating it is a
complex plot. Even the two-layer model does not catch all the complex
structure features without considering the impact of understory. As
indicated by tree height measurements in Fig. 5, ideally these plots
should be parameterized as three layer canopies; ignoring understory in
the model results in weaker returns from the understory and stronger
ground returns. A three-layer canopy model might work better here.
However, due to the sparse samples of tree parameters, it was main-
tained as a two-layer canopy.

In addition, the modeled waveforms tend to slightly overestimate
ground peak energy returns of LVIS measurements for all Bartlett plots.
Using a canopy and ground reflectivity ratio of one may also contribute
to the discrepancy. Bartlett is a deciduous forest and the ratio is likely
larger than one as discussed before.

5.2.2. Forest ecosystem research site in Howland, ME
We compared the modeled waveforms with LVIS data for the three

plots in the Howland Tower site and five plots in Shelterwood site
(Fig. 11). Shelterwood CT and NE plots were treated as two-layer ca-
nopies, and the rest of the plots as one-layer canopies. For the three
Howland Tower plots, the modeled waveforms are closely related to
averaged LVIS waveforms with R2 = 0.92–0.96 and
RMSE = 0.06–0.01. However, results from the Shelterwood stand tell a
different story. LVIS waveforms for all five plots show stronger ground
returns indicating they were very sparse canopies in 2003 due to prior
selective logging. After four years of growth, the modeled waveforms
show much weaker ground returns and relatively stronger vegetation
returns, indicating vegetation grew denser in 2007. Four plots have
R2 = 0.51–0.86 and RMSE = 0.024–0.026 and the worst plot
R2 = 0.29 and RMSE = 0.035. Discrepancy in modeled and LVIS wa-
veforms suggest vegetation growth from 2003 to 2007 in the Sherter-
wood stand was significant. For other stands, where trees were dense,
however, the growth in vegetation in this four-year period does not
serve as an important factor causing the differences in modeled and
LVIS waveforms.

5.3. Model and LVIS waveform comparison – stand scale

The modeled waveforms at stand level were also compared with

Fig. 10. Comparison of modeled waveforms (red) and individual
LVIS measurements (black) and their geometric means (green) at
different plots for the B2 and C2 stands in Bartlett, NH. (For in-
terpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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averaged LVIS waveforms at the six forest stands (100 m × 100 m)
(Fig. 12). Model inputs at stand level were calculated using all the tree
structure measurements collected for each stand. All stands were
treated as one-layer canopies, as it is hard to distinguish different layers
in tree height measurements for all plots in each stand.

Harvard Hardwood and Harvard Hemlock are quite dense forest
stands with very small ground returns in both modeled and LVIS wa-
veforms. R2 = 0.92–0.94, RMSE = 0.01.

Bartlett B2 and Bartlett C2 are also relatively dense stands.
R2 = 0.86 (C2) and 0.90 (B2) and RMSE ~ 0.01. For the Bartlett C2
stand, the modeled waveform shows one strong canopy peak return at
20 m height level, while LVIS waveforms extend the canopy peak re-
turns between 12 m–22 m height level, thus indicating that C2 stand
has a more complex vegetation structure. As discussed before, C2 NE
and SE plots are multilayer canopies; a one layer canopy model un-
derrepresents the vertical variation of vegetation structure. A two-layer
model might be required to correctly model lidar waveforms here. In
addition, the model slightly overestimates the ground returns for

Bartlett B2 and C2 stands. That may be due to the use of an under-
estimated canopy and background reflectance ratio in the model (see
detailed discussion in previous section).

The Howland Tower and Shelterwood stands are relatively sparser
canopies compared to the other four stands, particularly the
Shelterwood stand. The model performs better in the Tower site than
the Shelterwood site, with R2 = 0.92 and RMSE = 0.012. For the
Shelterwood stand, R2 = 0.57 and RMSE = 0.028. The modeled wa-
veform has stronger peak vegetation returns and weaker ground re-
turns. The discrepancy can be attributed to four-year time difference in
field and LVIS data collection timing, as discussed in Section 5.2.2.

5.4. Comparison between stand and plot scales

Fig. 13 compares the R2 and RMSE at the stand (stars) and the plot
(diamonds) scale for the six stands. Four stands–two Harvard stands,
Bartlett B2 and Howland Tower, have R2 > 0.90. For the Bartlett C2
stand R2 is lower, around 0.86. The RMSE values are around 0.01 for all

Fig. 11. Comparison of modeled waveforms (red) and individual
LVIS measurements and their geometric means (green) at
Howland Tower and Shelterwood. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the
web version of this article.)
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stands except for the Shelterwood stand. The Shelterwood stand has the
lowest R2 = 0.57 and largest RMSE = 0.028. The low performance for
this stand is due to vegetation growth.

At the plot scale the model has similar performance as at the stand
level, but with some variations, which is expected. Some plots perform
better than the stand level, and some are worse. R2 and RMSE vary
around the corresponding value at the stand level. Howland Tower and
Harvard Hardwood stands have smallest variation of plot level R2,0.03,
and 0.06 respectively, then Bartlett B2, 0.12, Harvard Hemlock, 0.16,
Bartlett C2,0.17 respectively, and Shleterwood, the largest, 0.33.

The plot level RMSE has similar patterns as R2. The plot level RMSE
variations are different at different stands. Howland Tower has the
lowest variation of plot level RMSE, (0.001). Harvard Hardwood
(0.006), Bartlett B2 (0.008), and Bartlett C2 (0.007) have similar var-
iations. Howland Shelterwood (0.01) and Harvard Hemlock (0.015)
have the largest RMSE ranges, and the later has plot level RMSE var-
iations larger than stand level RMSE.

6. Dicussion and conclusions

The Analytical Clumped Two-Stream (ACTS) canopy radiative
transfer model was used to model large-footprint lidar waveforms in six

forest stands in New England with vegetation structure data collected in
summer 2007 as inputs. The model results were compared to LVIS data
collected in summer 2003 in this region.

In summary, at the stand level, the overall coefficient of determi-
nation between the modeled and LVIS waveforms are R2 > 0.90 for
two Harvard stands, the Bartlett B2 and Howland Tower stands, For the
Bartlett C2 stand R2 is lower, around 0.86. The Shelterwood stand has
the lowest R2 = 0.57. The RMSE values are around 0.01 except for the
Shelterwood stand. A more detailed comparison at the plot and stand
levels indicates that the model at the plot level has similar performance
as at the stand level, with some variations. Some plots perform better
than the stand level, and some are worse.

Overall the one-layer model works well in relatively uniform stands
(Harvard Hardwood, Harvard Hemlock, Bartlett B2 and Howland
Tower). The difference between the modeled and LVIS measured ver-
tical vegetation structure for the Bartlett C2 stand indicates that a two-
layer model is necessary to fully model the lidar waveforms. The ACTS
model was tested in different vegetation types with various vegetation
complexity: single layer vs multilayer, and dense vs sparse, conifer and
deciduous forests at both stand and plot scales with good accuracy.

We made an effort to explore how the model performance compares
to other canopy lidar models. More recent work by Gastellu-Etchegorry

Fig. 12. Comparison of modeled waveforms (red) and LVIS mea-
surements with shaded grey for standard deviation and green for
the geometric means for six forest stands across the New England
region. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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et al. (2016) compared the Discrete Anisotropic Radiative Transfer
(DART) modeled and LVIS waveforms in Howland Tower site. The
coefficients of determination (R2) between the 89 pairs of LVIS and
DART simulated waveforms range from 0.28 to 0.96, with a mean R2 of
0.65 and a median R2 of 0.70 and RMSE ranges from 0.0422 to 0.2092
for the selected waveforms. Rosette et al. (2013) used the same LVIS
data to compare with the FLIGHT model (Rosette et al., 2013), however
we could not identify a quantitative evaluation value. Compared to
DART, ACTS has higher R2 and lower RMSE values.

More importantly this quantitative error information could be va-
luable information for model inversion. Currently we are developing a
Bayesian inversion approach to incorporate the impact of model un-
certainty on model inversion accuracy.

The LVIS waveforms contain rich canopy structural information,
which is valuable for ecological, hydrological and climate research.
ACTS describes how canopy structure parameters are linked with LVIS
waveform measurements based on the geometric optics and radiative
transfer (GORT) theory. This study demonstrates that with field-mea-
sured vegetation structure inputs, ACTS can produce the complex fea-
tures of lidar waveforms. This validation results demonstrate that ACTS
has the capability to describe the physical nature of the relationship
between lidar waveforms and vegetation structure.

7. Potential applications

7.1. Model inversion

This validation effort shed light on some potential applications of
using ACTS in lidar research fields. First of all, ACTS offers a simple but
physically-based model for inversion. Some single or lumped structure
parameters can be analytically inverted to avoid the ill-posed inversion
problem – possible multiple solutions from one set of measurements.
ACTS can be used in inverse mode to retrieve canopy gap probability,
foliage profile and specific structure information s such as crown size,
density and foliage density. This structure information will be critical
for understanding the terrestrial ecosystem functions, estimating global
carbon budget, characterizing the impact of vegetation structure
change on climate, habitat and biodiversity.

These 3D structure parameters can be directly used to initialize the
structure inputs for structure-based dynamic terrestrial ecosystem
modeling, such as Ent and ED for improved carbon flux and stock es-
timates to improve estimates of carbon stocks and fluxes, in forest
management. Currently those model inputs are parameterized based on
plant functional types and LAI derived from passive remote sensing
data. Hurtt et al. (2004) showed that just lidar-based tree height mea-
surements provided substantial constraints on model estimates of both
carbon stocks and net carbon fluxes.

7.2. Forward model applications

Another application of this modeling effort is to better understand
the underlying intrinsic nature of how each vegetation structure para-
meter contributes to waveforms. Understanding the intrinsic nature
may aid us in exploring new approaches to retrieving parameter esti-
mates from lidar measurements. For example, Ni-Meister and Lee
(2016) were able to derive an analytical relationship between above-
ground biomass and lidar waveforms based on a simplified ACTS
model. Using the relationship, above-ground biomass can be directly
derived from lidar waveform data. Our initial test results show that the
analytical approach to retrieve above-ground biomass from waveforms
outperforms the traditional height-metrics based above-ground biomass
retrieval (see more detail in Ni-Meister and Lee, 2016. The model can
also be applied to small footprint waveform and discrete lidar at stand/
plot scales in different aspects. For example, Armston et al., 2013 uses
the ACTS model and the method to retrieve ratio of canopy and back-
ground returns described in Ni-Meister et al. (2010b) to retrieve canopy
gap probability from both full waveform and discrete lidar. Built on
Armston et al. (2013), Chen et al. (2014) used an extension of ACTS
described in Yang et al. (2011) to test the sensitivity of canopy gap
probability to surface topography and survey characteristics. Ni-Meister
et al. (2008) used the original GO-based model (Ni-Meister et al., 2001)
to simulate canopy gap probability retrieved from a terrestrial lidar,
Echidna Validation Instrument (EVI) (Strahler et al., 2008).

7.3. Sensor design

Lastly, the ACTS model can also be used to assess the sensitivities of
waveforms to surface topography and off-nadir pointing effects, which
will provide further valuable information on vegetation structure re-
trieval accuracies. Yang et al. (2011) expanded ACTS to study the im-
pact of these effects on lidar waveform and vegetation height metrics
retrieval. Both off-nadir pointing and surface topography stretch wa-
veforms, which smears out the ground return. For large footprint lidar,
such as ICESat-GLAS (65 m–90 m), surface topography has a big effect
on lidar waveform and height metrics. Lee et al. (2011) used this model
to correct the impact of surface topography on tree height retrieval
from ICESat-GLAS data with success.

For medium footprint lidar, such as the GEDI instrument to be borne
on the International Space Station, the off-nadir angle is about± 5°
(Ralph Dubayah - personal communication), for LVIS ± 6° (J. Bryan
Blair – personal communication). Thus, the surface topography and off-
nadir pointing effects are much weaker. Using the ACTS model, Yang
et al. (2011) showed that a five-degree-off-nadir angle can lead to one
meter overestimation on RH100. The impact on RH50 is much smaller
than on RH100. The impact of five-degree-off-nadir pointing angle on
waveforms varies with vegetation density. For a relatively dense forest,
Yang et al. (2011) demonstrated the impact on peak vegetation returns
is< 5%. The ACTS model has proven to be a valuable tool in predicting
performance characteristics of a future sensor.

For small footprint lidar, due to its small footprint size, the impact of
surface topography on waveforms is minimal. However, most small
footprint lidar use large scan angles. For example, the Optech Galaxy
sensor routinely operates with a 30° scan angle, and can range from
18°–42°. The Leica ALS50-II scans at 20° (Warne et al., 2009). Large

Fig. 13. Comparison of R2 and RMSE at stand (stars) and plot (diamonds) levels for six
stands: HAHA-Harvard Hardwood, HAHE-Harvard Hemlock, BAB2-Bartlett B2, BAC2-
Bartlett C2, HOSH-Howland Shelterwood, HOTO-Howland Tower.
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scan angles lead to extended waveforms and may have large impact on
vegetation structure retrievals. ACTS can be used to study this impact.

With the evaluation presented in this study, the simple and analy-
tical ACTS model was proven to be a useful tool to retrieve different
vegetation structure parameters from large footprint lidar measure-
ments. Its application is not only limited to large footprint lidar, but
also extends to medium and small-footprint lidar.

Acknowledgements

The authors are greatly indebted to three reviewers for their thor-
ough reviews of the manuscript, which helped us improve the quality of
the manuscript significantly. The research undertaken for this paper
was partially funded by NASA Grant NNX10AG28G.

References

Anderson, J.E., Martin, M.E., Smith, M.L., Dubayah, R.O., Hofton, M., Hyde, P., Peterson,
B.E., Blair, J.B., Knox, R.G., 2006. The use of waveform Lidar to measure northern
temperate mixed conifer and deciduous forest structure in New Hampshire. Remote
Sens. Environ. 105 (3), 248–261.

Anderson, J.E., Plourde, L.C., Martin, M.E., Braswell, B.H., Smith, M.-L., Dubayah, R.O.,
Hofton, M.A., Blair, J.B., 2008. Integrating waveform Lidar with hyperspectral ima-
gery for inventory of a northern temperate forest. Remote Sens. Environ. 112,
1856–1870.

Armston, J., Disney, M., Lewis, P., Scarth, P., Phinn, S., Lucas, R., Bunting, P., Goodwin,
N., 2013. Direct retrieval of canopy gap probability using airborne waveform Lidar.
Remote Sens. Environ. 134, 24–38.

Barclay, H.J., Trofymow, J.A., 2000. Relationship of readings from the Li-COR canopy
analyzer to total one-sided leaf area index and stand structure in immature Douglas-
fir. For. Ecol. Manag. 132 (2–3), 121–126.

Barford, C.C., Wofsy, S.C., Goulden, M.L., Munger, J.W., Hammond, E., Pyle, S.P., ...
Moore, K., 2001. Factors controlling long- and short-term sequestration of atmo-
spheric CO2 in a mid-latitude forest. Science 294, 1688–1690.

Blair, J.B., Rabine, D.L., Hofton, M.A., 1999. The Laser Vegetation Imaging Sensor (LVIS):
a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation
and topography. J. Photogramm. Remote Sens. 54, 115–122.

Blair, J.B., Hofton, M.A., Rabine, D.L., 2004. Processing of NASA LVIS Elevation and
Canopy (LGE, LCE and LGW) Data Products, Version 1.0. http://lvis.gsfc.nasa.gov.

Bye, I.J., North, P.R.J., Los, S.O., Kljun, N., Rosette, J.A.B., Hopkinson, C., Chasmer, L.,
Mahoney, C., 2017. Estimating forest canopy parameter from satellite waveform
Lidar by inversion of the FLIGHT three-dimensional radiative transfer model. Remote
Sens. Environ. 188 (177–189).

Calders, K., Lewis, P., Disney, M.I., Verbesselt, J., Herold, M., 2013. Modelling Lidar
waveforms to solve for canopy properties. Remote Sens. Environ. 134, 39–49. http://
dx.doi.org/10.1016/j.rse.2013.02.018.

Chen, X.T., Disney, M.I., Lewis, P., Armston, J., Han, J.T., Li, J.C., 2014. Sensitivity of
direct canopy gap fraction retrieval from airborne waveform Lidar to topography and
survey characteristics. Remote Sens. Environ. 143, 25.

Disney, M.I., Kalogirou, V., Lewis, P.E., Prieto-Blanco, A., Hancock, S., Pfeifer, M., 2010.
Simulating the impact of discrete-return lidar system and survey characteristics over
2 young conifer and broadleaf forests. Remote Sens. Environ. 114, 1546–1560.
http://dx.doi.org/10.1016/j.rse.2010.02.009.

Drake, J.B., Dubayah, R.O., Clark, D.B., Knox, R.G., Blair, J.B., Hofton, M.A., Chazdon,
R.L., Weishampel, J.F., Prince, S., 2002a. Estimation of tropical forest structural
characteristics using large-footprint lidar. Remote Sens. Environ. 79, 305–319.

Drake, J.B., Dubayah, R.O., Knox, R.G., Clark, D.B., Blair, J.B., 2002b. Sensitivity of large-
footprint Lidar to canopy structure and biomass in a neotropical rainforest. Remote
Sens. Environ. 81, 378–392.

Drake, J.B., Knox, R.G., Dubayah, R.O., Clark, D.B., Condit, R., Blair, J.B., Hofton, M.,
2003. Above-ground biomass estimation in closed canopy Neotropical forests using
Lidar remote sensing: factors affecting the generality of relationships. Glob. Ecol.
Biogeogr. 12, 147–159.

Dubayah, R.O., Drake, J.B., 2000. Lidar remote sensing for forestry. J. For. 98, 44–46.
Gastellu-Etchegorry, J.P., Yin, T., Lauret, N., Grau, E., Rubio, J., Cook, B.D., Morton, D.C.,

Sun, G., 2016. Simulation of satellite, airborne and terrestrial LiDAR with DART (I):
waveform simulation with quasi-Monte Carlo ray tracing. Remote Sens. Environ. 184
(2016), 418–435.

Goetz, S., Steinberg, D., Dubayah, R., Blair, B., 2007. Laser remote sensing of canopy
habitat heterogeneity as a predictor of bird species richness in an eastern temperate
forest, USA. Remote Sens. Environ. 108, 254–263. http://dx.doi.org/10.1016/j.rse.
2006.11.016.

Hale, S.E., Edwards, C., 2002. Comparison of film and digital hemispherical photography
across a wide range of canopy densities. Agric. For. Meteorol. 112, 51–56.

Hancock, S., Lewis, P., Disney, M.I., Foster, M., Muller, J.-P., 2008. Assessing the
Accuracy of Forest Height Estimation with Long Pulse Waveform Lidar Through
Monte-Carlo Ray Tracing. Silvilaser, Edinburgh (September, 17–18).

Hancock, S., Armston, J., Li, Z., Gaulton, R., Lewis, P., Disney, M., Danson, F.M., Strahler,
A., Schaaf, C., Anderson, K., Gaston, K.J., 2015. Remote Sens. Environ. 164, 208–224.

Hancock, S., Anderson, K., Disney, M., Gaston, K.J., 2017. Measurement of fine-spatial-

resolution 3D vegetation structure with airborne waveform lidar: calibration and
validation with voxelised terrestrial lidar. Remote Sens. Environ. 188, 37–50.

Harding, D.J., Carabajal, C.C., 2005. ICESat waveform measurements of within-footprint
topographic relief and vegetation vertical structure. Geophys. Res. Lett. 32, L21S10.
http://dx.doi.org/10.1029/2005GL023471.

Hurtt, G.C., Dubayah, R., Drake, J., Moorcroft, P.R., Pacala, S.W., Blair, J.B., Fearon,
M.G., 2004. Beyond potential vegetation: combining lidar data and a height-struc-
tured model for carbon studies. Ecol. Appl. 14 (3), 873–883.

Jupp, D.L.B., Culvenor, D.S., Lovell, J.L., Newnham, G.J., Strahler, A.H., Woodcock, C.E.,
2009. Estimating forest LAI profiles and structural parameters using a ground based
laser called “Echidna®”. Tree Physiol. 29 (2), 171–181.

Kiang, N.Y., Aleinov, I., Ni-Meister, W., Moorcroft, P.R., Koster, R.D., Kharecha, P., Kim,
Y., Yang, W., Puma, M., 2008. The Ent dynamic global terrestrial ecosystem model
(DGTEM) in the GISS GCM: algorithms for mixed vegetation communities. Geophys.
Res. Abstr. 10, EGU2008–11418 (SRef-ID: 1607-7962/gra/EGU2008-A-11418 EGU
General Assembly, Vienna, Austria, April 13–18, 2008).

Kimes, D.S., Ranson, K.J., Sun, G., Blair, J.B., 2006. Predicting Lidar measured forest
vertical structure from multi-angle spectral data. Remote Sens. Environ. 100,
503–511.

Lee, S., Ni-Meister, W., Yang, W., 2011. Physically based vertical vegetation structure
retrieval from ICESat data: validation using airborne data in White Mountain
National Forest, New Hampshire, USA. Remote Sens. Environ. 115 (11), 2776–2785.

Lefsky, M.A., Cohen, W.B., Acker, S.A., Parker, G., Spies, T.A., Harding, D., 1999. Lidar
remote sensing of the canopy structure and biophysical properties of Douglas Fir-
Western Hemlock Forests. Remote Sens. Environ. 70, 339–361.

Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J., 2002. Lidar remote sensing for
ecosystem studies. Bioscience 52 (1), 19–30.

Lefsky, M.A., Harding, D.J., Keller, M., Cohen, W.B., Carabajal, C.C., Espirito-Santo, F.D.,
et al., 2005. Estimates of forest canopy height and aboveground biomass using
ICESat. Geophys. Res. Lett. 32, L22S02.

Li, X., Strahler, A.H., Woodcock, C.E., 1995. A hybrid geometric optical-radiative transfer
approach for modeling albedo and directional reflectance of discontinuous canopies.
IEEE Trans. Geosci. Remote Sens. 33 (2), 466–480.

Moorcroft, P.R., Hurtt, G.C., Pacala, S.W., 2001. A method for scaling vegetation dy-
namics: the ecosystem demography model (ED). Ecol. Monogr. 71 (4), 557–585.

Ni-Meister, W., 2015. Aboveground terrestrial biomass and carbon stock estimations from
multisensory remote sensing. In: Remote Sensing Handbook. CRC Press (ISBN-13:
978-1482218015, ISBN-10: 1482218011).

Ni-Meister, W., Lee, S., 2016. Allometric relationships between above-ground biomass
and LiDAR full waveform measurements. Am. Geophys. Union (San Francisco, CA,
December 14-18 (oral presentation)).

Ni-Meister, W., Jupp, D.L.B., Dubayah, R., 2001. Modeling Lidar waveforms in hetero-
geneous and discrete canopies. IEEE Trans. Geosci. Remote Sens. 39 (9), 1943–1958.

Ni-Meister, W., Strahler, A., Woodcock, C.E., Schaaf, C., Jupp, D.L.B., Yao, T., Zhao, F.,
Yang, X., 2008. Modeling the hemispherical scanning, below-canopy Lidar and ve-
getation structure characteristics with a geometric-optical and radiative-transfer
model. Can. J. Remote. Sens. 34 (Suppl. 2), S385–S397.

Ni-Meister, W., Yang, W., Kiang, N., 2010a. A clumped-foliage canopy radiative transfer
model for a global dynamic terrestrial ecosystem model I: theory. Agric. For.
Meteorol. 150 (7–8), 881–894. http://dx.doi.org/10.1016/j.agrformet.2010.02.009.

Ni-Meister, W., Lee, S., Strahler, A.H., Woodcock, C.E., Schaaf, C., Ranson, J., Sun, G.,
Blair, J.B., 2010b. Assessing general relationships between above-ground biomass
and vegetation structure parameters for improved carbon estimate from vegetation
lidar. J. Geophys. Res. 115, G00E11. http://dx.doi.org/10.1029/2009JG000936.

North, P.R.J., Rosette, J.A., Suarez, J.C., Los, S.O., 2010. A Monte Carlo radiative transfer
model of satellite waveform Lidar. Int. J. Remote Sens. 31 (5), 1343–1358.

Rosette, J.A.B., North, P.R.J., Suarez, J.C., 2008. Vegetation height estimates for a mixed
temperate forest using satellite laser altimetry. Int. J. Remote Sens. 29, 1475–1493.

Rosette, J.A.B., North, P.R.J., Rubio-Gil, J., Cook, B., Los, S., Suarez, J., Sun, G., Ranson,
J., Blair, B.J., 2013. Evaluating prospects for improved forest parameter retrieval
from satellite Lidar using a physically-based radiative transfer model. IEEE Sel. Top.
Appl. Earth Obs. Remote Sens. 6 (1), 45–53.

Schull, M.A., Ganguly, S., Samanta, A., Huang, D., Shabanov, N.V., Jenkins, J.P., Chiu,
J.C., Marshak, A., Blair, J.B., Myneni, R.B., Knyazikhin, Y., 2007. Physical inter-
pretation of the correlation between multi-angle spectral data and canopy height.
Geophys. Res. Lett. 34, L18405. http://dx.doi.org/10.1029/2007GL031143.

Selkowitz, D.J., Green, G., Peterson, B., Wylie, B., 2012. A multi-sensor lidar, multi-
spectral and multi-angular approach for mapping canopy height in boreal forest re-
gions. Remote Sens. Environ. 121, 458–471.

Spies, T.A., 1998. Forest structure: a key to the ecosystem. Northwest Sci. 72, 34–39.
Stenberg, P., 1996. Correcting LAI-2000 estimates for the clumping of needles in shots of

conifers. Agric. For. Meteorol. 79 (1–2), 1–8.
Strahler, A.H., Jupp, D.L.B., Woodcock, C.E., Schaaf, C.B., Yao, T., Zhao, F., et al., 2008.

Retrieval of forest structure parameters using a ground-based lidar instrument
(Echidna@). Can. J. Remote. Sens. 34 (Suppl. 2).

Strahler, A.H., Schaaf, C., Woodcock, C., Jupp, D., Culvenor, D., Newnham, G., Dubayah,
R., Yao, T., Zhao, F., Yang, X., 2011. ECHIDNA Lidar Campaigns: Forest Canopy
Imagery and Field Data, U.S.A., 2007–2009. ORNL DAAC, Oak Ridge, Tennessee,
USA. http://dx.doi.org/10.3334/ORNLDAAC/1045.

Sun, G., Ranson, K.J., 2000. Modeling Lidar returns from forest canopies. A three-di-
mensional radar backscatter model of forest canopies. IEEE Trans. Geosci. Remote
Sens. 38 (6), 2617–2626.

Tang, H., Dubayah, R., Swatantran, A., Hofton, M., Sheldon, S., Clark, D.B., et al., 2012.
Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at
LaSelva, Costa Rica. Remote Sens. Environ. 124, 242–250.

Tang, H., Brolly, M., Zhao, F., Strahler, A.H., Schaaf, C.L., Ganguly, S., et al., 2014.

W. Ni-Meister et al. Remote Sensing of Environment 204 (2018) 229–243

242

http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0005
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0005
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0005
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0005
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0010
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0010
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0010
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0010
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0015
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0015
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0015
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0020
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0020
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0020
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf2032119
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf2032119
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf2032119
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0025
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0025
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0025
http://lvis.gsfc.nasa.gov
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0035
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0035
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0035
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0035
http://dx.doi.org/10.1016/j.rse.2013.02.018
http://dx.doi.org/10.1016/j.rse.2013.02.018
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0045
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0045
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0045
http://dx.doi.org/10.1016/j.rse.2010.02.009
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0050
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0050
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0050
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0055
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0055
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0055
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0060
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0060
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0060
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0060
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0065
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0075
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0075
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0075
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0075
http://dx.doi.org/10.1016/j.rse.2006.11.016
http://dx.doi.org/10.1016/j.rse.2006.11.016
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0085
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0085
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0090
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0090
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0090
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0095
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0095
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0100
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0100
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0100
http://dx.doi.org/10.1029/2005GL023471
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0115
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0115
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0115
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0125
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0125
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0125
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0130
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0130
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0130
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0130
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0130
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0135
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0135
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0135
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0140
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0140
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0140
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0145
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0145
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0145
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0150
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0150
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0155
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0155
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0155
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0160
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0160
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0160
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0170
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0170
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0210
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0210
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0210
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0215
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0215
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0215
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0220
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0220
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0225
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0225
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0225
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0225
http://dx.doi.org/10.1016/j.agrformet.2010.02.009
http://dx.doi.org/10.1029/2009JG000936
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0240
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0240
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0250
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0250
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0255
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0255
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0255
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0255
http://dx.doi.org/10.1029/2007GL031143
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0265
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0265
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0265
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0270
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0275
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0275
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0280
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0280
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0280
http://dx.doi.org/10.3334/ORNLDAAC/1045
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0290
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0290
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0290
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0295
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0295
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0295
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0300


Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar
remote sensing: a case study in Sierra National Forest, CA. Remote Sens. Environ.
143, 131–141.

Warne, T.A., Nellis, M.D., Foody, G.M., 2009. The SAGE Handbook of Remote Sensing.
SAGE Publications Ltd (ISBN-13: 978-1412936163, ISBN-10: 1412936160).

Warren-Wilson, J., 1963. Estimation of foliage denseness and foliage angle by inclined
point quadrats. Aust. J. Bot. 11, 95–105.

Widlowski, J.L., Mio, C., Disney, M., Adams, J., Andredakis, I., Atzberger, C., Brennan, J.,
Busetto, L., Chelle, M., Ceccherini, G., Colombo, R., Côté, J.F., Eenmäe, A., Essery, R.,
GastelluEtchegorry, J.P., Gobron, N., Grau, E., Haverd, V., Homolová, L., Huang, H.,
Hunt, L., Kobayashi, H., Koetz, B., Kuusk, A., Kuusk, J., Lang, M., Lewis, P.E., Lovell,
J.L., Malenovský, Z., Meroni, M., Morsdorf, F., Mõttus, M., NiMeister, W., Pinty, B.,
Rautiainen, M., Schlerf, M., Somers, B., Stuckens, J., Verstraete, M.M., Yang, W.,
Zhao, F., Zenone, T., 2015. The fourth phase of the radiative transfer model inter-
comparison (RAMI) exercise: actual canopy scenarios and conformity testing. Remote
Sens. Environ. 169, 418–437.

Yang, W., Ni-Meister, W., Kiang, N., Moorcroft, P.R., Strahler, A.H., Oliphant, A., 2010. A
clumped-foliage canopy radiative transfer model for a global dynamic terrestrial
ecosystem model I: validation. Agric. For. Meteorol. 150 (7–8), 895907. http://dx.
doi.org/10.1016/j.agrformet.2010.02.008.

Yang, W., Ni-Meister, W., Lee, S., 2011. Assessment of the impacts of surface topography,
off-nadir pointing and vegetation structure on vegetation lidar waveforms using an
extended geometric optical and radiative transfer model. Remote Sens. Environ. 115,
2810–2822.

Yao, T., Yang, X.Y., Zhao, F., Wang, Z.S., Zhang, Q.L., Jupp, D.L.B., Culvenor, D.S.,
Newnham, G.J., Ni-Meister, W., Schaaf, C.B., Woodcock, C.E., Strahler, A.H., 2011a.
Measuring forest structure and biomass in New England forest stands using Echidna
ground-based lidar. Remote Sens. Environ. 115, 2965–2974.

Yao, T., Yang, X., Gao, F., Wang, Z., Zhang, Q., Jupp, D., Culvenor, D., Newnham, G., Ni-
Meister, W., Schaaf, C.B., Woodcock, C., Strahler, A., 2011b. Estimation of forest
structure parameter and biomass New England forest stands using Echidna ground-
based lidar. Remote Sens. Environ. 115 (11), 2965–2974.

Zhao, F., Yang, X.Y., Schull, M.A., Roman-Colon, M.O., Yao, T., Wang, Z.S., et al., 2011.
Measuring effective leaf area index, foliage profile, and stand height in New England
forest stands using a full-waveform ground-based lidar. Remote Sens. Environ. 115,
2954–2964.

Zwally, H.J., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A., Bufton, J.,
Dezio, J., Hancock, D., Harding, D., Herring, T., Minster, B., Quinn, K., Palm, S.,
Spinhirne, J., Thomas, R., 2002. ICESat's laser measurements of polar ice, atmo-
sphere, ocean and land. J. Geodyn. 34, 405–445.

W. Ni-Meister et al. Remote Sensing of Environment 204 (2018) 229–243

243

http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0300
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0300
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0300
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0305
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0305
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0310
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0310
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0315
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0315
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0315
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0315
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0315
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0315
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0315
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0315
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0315
http://dx.doi.org/10.1016/j.agrformet.2010.02.008
http://dx.doi.org/10.1016/j.agrformet.2010.02.008
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0325
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0325
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0325
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0325
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0330
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0330
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0330
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0330
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0335
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0335
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0335
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0335
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0350
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0350
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0350
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0350
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0355
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0355
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0355
http://refhub.elsevier.com/S0034-4257(17)30491-1/rf0355

	Validating modeled lidar waveforms in forest canopies with airborne laser scanning data
	Introduction
	The physical model
	The ACTS model
	Lidar waveform modeling using ACTS

	Study site and data description
	Study sites
	Field measurements
	LVIS data

	Model inputs
	Vegetation structure inputs
	Spectral inputs

	Results
	Impact of different LAIs on modeled waveforms
	Model and LVIS waveform comparison – plot scale
	Bartlett experimental forest, NH
	Forest ecosystem research site in Howland, ME

	Model and LVIS waveform comparison – stand scale
	Comparison between stand and plot scales

	Dicussion and conclusions
	Potential applications
	Model inversion
	Forward model applications
	Sensor design

	Acknowledgements
	References




