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 SECTION OVERVIEW  
 

 

 
 

Part One:  BACKGROUND information on travel surveys includes a short history of 

the efforts to gather information on household travel patterns and the challenges facing 
traditional surveying methodologies.  Recently, global positioning systems (GPS) 

technologies have been introduced to facilitate the data collection process.  While GPS 

traces can provide accurate information on the location and time of travel, these traces do 

not contain explicit information on the mode used to travel (e.g., walking, biking, transit 
or auto).  Strategies under consideration for determining the mode using the GPS trace 

data have not been systematically investigated with respect to the needs of practitioners.   

 
Part Two:  METHODOLOGICAL ANALYSIS reveals a mixed set of results from the 

three primary methods currently in use:  rule-based; neural networks; and fuzzy logic.  

Rule-based mode detection uses a series of hierarchical rules.  The neural network 
method uses an input layer, an output layer and a hidden layer approach.  Fuzzy logic 

uses approximations.  Nine applications are reviewed.   

 

Part Three:  EVALUATION OF GPS MODE DETECTION STRATEGIES 
compares rule-based, neural networks and fuzzy logic approaches using an experimental 

dataset comprised of 101 trips.  The effectiveness and appropriateness for practice of the 

three methods are evaluated.    
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 PART ONE   

 

 

 

BACKGROUND 
 

 

Introduction 

 

Finding an effective method for obtaining information on the travel patterns of household 

members is a critical need for transportation planners and researchers.  This is particularly the 

case for Metropolitan Planning Organizations (MPOs), now being pressured to improve their 

travel demand forecasting capabilities.  A recent review of transportation planning practice 

pointed out that current travel demand models are inadequate to address transportation policy 

concerns (e.g., lack of data for non-motorized trips) (Transportation Research Board 2007).  

Most transportation modeling efforts rely heavily on the data from household travel surveys.  

These surveys are expensive to implement and have only been conducted in a limited number of 

cities, very infrequently (Lawson, Fassman et al. 2007).  These surveys also can place a large 

burden on the respondents to recall and report their travel patterns and on agencies with respect 

to resources (including staff time and consulting costs). 

 

An emerging strategy for generating high-quality data is the use of Global Positioning Systems 

(GPS) trace data to collect travel patterns.  While some challenges have been addressed in the 

collection and application of GPS trace data (Lawson, Chen et al. 2008), there is ample evidence 

that these data are more accurate than traditional household travel surveys that rely upon 

respondents to remember the time and location of their movements.  The GPS trace data includes 

data elements that accurately track the location and time of travel, but not the essential mode 

information, such as walking, biking, transit or auto.  Currently, this data is used as 

supplementary information, requiring survey participants to carry the GPS unit and fill out a 

traditional survey instrument, or provide information during a prompted recall interview over the 

phone. A modified methodology reduces the survey component and allows participants to enter 

mode information on the web, on the GPS device, or other electronic unit.  An emerging area of 

research uses only the GPS trace data to infer mode.  Such a strategy could greatly reduce 

respondent burden, and at the same time, provide a high quality source of travel behavior 

information.   

 

Evolution of Travel Survey Methods  

 

Since the 1950s, the methods used to collect household travel data have been expensive, with an 

excessive burden on respondents to self-report their travel activities for a specific time period 

(e.g., asking for all the travel activities of each household member, over a one or two day  
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period).  Stopher (2009) describes the original in-home interviews process where interviewers 

knocked on the front doors of a selected sample of homes, unannounced, to ask a set of questions 

about the previous day‟s travel.   

 

By the end of the 1970s, in-home interviews were replaced with a strategy that included 

recruiting households by telephone, followed by a mail-out/mail-back survey to consenting 

households. Unfortunately, the response rate was very low, prompting researchers to rely on the 

telephone for retrieving information recorded in a written diary-style survey instrument, as well 

as the initial contact for recruitment.  The use of “active” data (e.g., respondent reports data 

elements) continues to be problematic, with an increasing reluctance by household members to 

answer telephone calls from unrecognized sources (using caller ID services); increasing use of 

cell phones and corresponding reduction of “landline” telephone use; and increasing refusal rates 

by households (Stopher 2009).  

 

In the mid-1990s, new technologies capable of collecting data without respondent participation 

(e.g., global position systems (GPS)), offered the promise of a methodology to replace the 

traditional household travel survey data approach.  Bricka (2009) reports the use of GPS in 

regional travel surveys in the United States, beginning in Lexington, Kentucky, in 1996.   Bricka 

and Bhat (2006) found the inclusion of GPS in travel surveys in Los Angeles; Pittsburgh; St. 

Louis; Kansas City; Reno; Portland; Seattle; Chicago; Washington, DC; and Baltimore.  Since 

1997, Texas has conducted six regional surveys that included a 10% GPS subsample.  California 

and Ohio both used GPS in statewide surveys.  However, all but the Portland and Chicago efforts 

were in-vehicle applications, rather than on-body GPS.  The purpose of all of these GPS 

deployments was to audit trip rates.    

 

Perdok et al. (1998) proposed a strategy for on-body data collection that required a person to 

carry a fairly bulky unit to record the position and time data, and the carrier to “input” the mode 

used and trip purpose into a portable device.  Stopher and Greaves (2006) describe recent efforts 

to increase the use of passive data collection methods primarily to increase accuracy and reduce 

costs. 

. 

More recently, the New York Metropolitan Transportation Council (NYMTC) sponsored a 

special study for the use of GPS for their upcoming large scale household travel surveying effort 

(Lawson, Chen et al. 2008).   NYMTC staff was particularly interested in “research to practice” 

methods that were transparent, cost-effective, could be replicated, and, where possible, 

implemented by in-house staff.  It was demonstrated in this effort that staff could deploy the GPS 

equipment and participate in the data collection effort.  Currently, the data can provide extremely 

dense and accurate data on the location and time of a travel event, but lacks explicit information 

on the mode of travel.  Developing an effective mode identification strategy from the GPS trace 

data is critical in the preparation of a practice-ready dataset
1
.      

                                                
1
 It should be noted that while it is theoretically possible for a mode identification strategy to be 

implemented at any time during the post-processing operations (e.g., before or after each trip segment is 

identified, or simultaneously with other data enhancements, such as trip purpose identification), for the 

purposes of evaluation, the mode identification step will be assumed to be implemented after a trip 
segmentation step has been performed. 
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Methodologies used in previous studies 

 

Thirteen studies were reviewed to establish the state of the practice using GPS trace data for 

travel surveying or related efforts.  Table 1 lists the characteristics and outcomes of these studies.   

 

 

Table 1:  Characteristics and Outcomes of the Studies Reviewed 
 

First 

Author 

(year)  

 

Location of 

study 

 

Number of 

cases 

 

Processing steps prior 

to mode identification  

 

Study Outcomes 

Bialostozky 

(2009) 

New York 

Metropolitan 

Region 

24 students Define trip between two 

clusters of points before 

beginning mode 

identification. 

Develops a computerized methodology 

using geographic information systems 

(GIS) to determine mode.  

Bothe 

(2009) 

Amersfoort, 

Veenendaal, & 

Zeewolde, 

Netherlands 

1104 

participants  

Remove unreliable 

trackpoints and divide 

into trips by categories. 

Develops a methodology using GPS 

data, to determine modes of travel and a 

validation process that uses a web-based 

user interface. 

Chung 

(2005) 

Toronto, Canada 60 students Identification of road 

links using GIS layer of 

streets. 

Using replicated travel patterns, 

develops a tool for automatic processing 

of GPS data using a rule-based 
algorithm with attributes of modes.   

Clifford 

(2008) 

Adelaide, 

Australia 

Not 

reported 

GPS data is assumed to 

be divided into trips. 

Develops procedure for identifying 

mode using GIS and heuristics based on 

speed, route of travel, and demographic 

information.   

de Jong 

(2003) 

No application No 

application 

GPS data is “cleaned” 

and then mapped in GIS.   

Develops a series of rules for 

determining mode from GPS data with 

additional data from recall surveys.   

Flamm 

(2007) 

N/A N/A N/A Describes process to be used to collect 

data from 30 persons using GPS, with 

recall prompt from an interviewer to 

acquire mode information. 

Gilani 

(2005) 

University of 

Southern Florida 

area 

100 trips, 25 

of each type 

taken by 

author 

Critical points are 

determined in the GPS 

data.   

To develop an automated process for 

determining mode from GPS enabled 

phone data. 

Gonzalez   
(2008) 

Tampa, Florida 114 trips GPS-enabled mobile 
phones programmed to 

output location every 

four seconds.   

Demonstrates the feasibility of using 
GPS-enabled phone data and neural 

networks to automatically detect mode.   

Lawson 

(2008) 

New York 

Metropolitan 

Region 

5 students 

using 6 GPS 

units 

Data is cleaned. Relevant portion of report demonstrates 

the feasibility of using an algorithm in 

Excel to develop mode profiles.   
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   (Table 1 continued) 
 

First 

Author 

(year)  

 

Location of 

study 

 

Number of 

cases 

 

Processing steps prior 

to mode identification  

 

Study Purpose 

Schuessler 

(2009) 

Zurich, 

Winterthur, and 

Geneva, 

Switzerland 

4,882 

participants 

with on-body  

GPS 

receivers 

Data is cleaned and then 

trips and activities are 

determined.   

Develops a post-processing 

procedure using only GPS data 

to identify mode. 

Stopher 

(2008a) 

N/A Not provided Data is cleaned and 

segmented into trips 

Develops software to identify 

modes.  

Tsui (2006) Toronto, 

Canada 

9 volunteers 

(109 trips) 

Data is “cleaned”, 

followed by 
identification of activity 

and trip.  

 Develops an integrated process 

using GPS, GPS and GIS, and a 
fuzzy logic-based mode 

identification algorithms. 

Upadhyay 

(2008) 

N/A N/A N/A Using fuzzy logic based 

algorithm (see Schuessler and 

Axhausen 2009), develops a 

methodology for identifying a 

set of parameter values. 

Zheng 

(2008) 

14 cities in 

China 

45 

participants 

Segmentation method 

used on raw GPS data. 

Develops a methodology to 

identify mode for personal use, 

particularly outdoor 

movements.  

 
 

The majority of these studies used volunteers or very small samples.  Both of the large studies 

were conducted in Europe (Bothe and Maat 2009; Schuessler and Axhausen 2009).   Most of the 

studies were experimental in nature, either focused on examining the feasibility of a method or 

developing the method itself.     

 

Table 2 provides a detailed description of the various algorithms developed, modes detected, and 

strategies used for mode detection.  Comparing and contrasting these studies presents a 

challenge, as they vary in approach, and for the most part, each has been conducted with a 

unique dataset.  To facilitate a comparison of these approaches, it is necessary to categorize the 

methods used in a manner that would allow MPOs, and other transportation organizations 

considering the use of the GPS for travel surveys, to evaluate respondent, deployment, and 

processing burdens.   

  



 

PART ONE -  BACKGROUND          1 - 5 

 

Table 2:  Identified Modes and Description of Strategies Implemented 
 

1st Author 

(year)  

 

 

Modes Identified 

 

Strategy Implemented 

Bialostozky 

(2009) 

Auto, bus, subway, 

commuter rail, 

walk, and 

underground 
transfer 

 

Designate underground travel when 2 consecutive points are more than 120 

s and 250 m apart; 

Designate walk segment at every modal transfer (at least 60 s; maximum 

speed <= 10 km/h; average speed <= 6 km/h); 
Identify segment as walk, non-walk aboveground, or non-walk 

underground; 

If non-walk segment, identify above ground subway or rail.  GPS data is 

mapped using GIS layers with subway lines and rail lines;  

If non-walk on streets, bus segment must start and end near a bus stop, 

mapping to GIS layer of bus stops and be located on streets with bus routes, 

at <= 55 mph, with acceleration <= 1.5 m/s2; 

Signal gaps indicate underground segments, identified on GIS layers near 

subway station is subway trip; and 

Gaps in car or bus trips are identified as tunnels with GIS layer.   

Bothe (2009) Auto, bike, walk, 

train, bus or metro 

Calculate average and maximum speed to determine mode as walking, 

cycling, or auto.  Train trip is identified if > 50% of trackpoints are within 
50 m of center of a rail line and  maximum speed is at least 20 km/h. GIS 

layer with train station locations is used to map train trip start and end 

points. 

Chung (2005) Walk, bicycle, 

auto and bus (or 

street car) 

To set the modality of a trip – use the following rules: IF average trip_speed 

< 10 km/h AND max trip_speed < 14 km/h THEN set modality = „foot‟; 

ELSE IF average trip_speed < 25 km/h AND max trip_speed < 45 km/h 

THEN set modality = „bicycle‟; ELSE IF average trip_speed < 200 km/h 

AND THEN set modality = „car‟; IF trackpoint is within railarea (line 

element of 100 meters width following rail tracks),  THEN trackpoint = 

railpoint; IF nr trackpoints within trip>= 20 AND max trip_speed  > 20 

km/h AND 2*nr railpoints within trip > nr trackpoints within trip THEN set 

modality – „train‟ AND set category = „railwaystation‟ 

Clifford 

(2008) 
Stopher  

(2008a,b) 

 

Foot (walk), 

bicycle (bike), 
private vehicle 

(auto) and public 

transport (rail, bus, 

tram and ferry) 

Requires GIS layers: street network; all public transport routes (including 

rail and subway lines); all bus stops and station locations/Walk is identified 
by low speeds for the entire trip.  Off-network public transport modes (rail 

and ferry) are then indentified using GIS layer of routes for these modes.  

Underground rail trips appear as gaps – repaired in ad hoc process.  Speed, 

acceleration and deceleration are reduced to 85th percentile to remove 

extremes.   

Bus is based on appropriate speeds and proximity to bus stops in GIS layer.  

Deceleration is expected near these locations.   

Demographic data is used to identify bike trips, based on ownership of at 

least one bike per household.  Bike trips must begin from home location or 

continuation of previous bike segment and have appropriate speeds, 

acceleration and deceleration patterns.  Remaining trips are auto by default, 
with check for appropriate speed, acceleration and deceleration patterns.  

Passenger is identified as any person without a current license (obtained 

from demographic information).   
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(Table 2 continued) 
 

1st Author 

(year)  

 

 

Modes Identified 

 

Process Implemented 

de Jong (2003) Walk, train, ferry, 

bus, car 

 

Walk: no fixed route; no fixed stops; rare unwanted stops; max speed 7 to 15 

km/h; average speed 4 km/h; no unique infrastructure. 

Train: fixed route; fixed stops; rare unwanted stops; max speed 110 km/h; 

average speed 60 km/h; requires own infrastructure. 

Ferry: fixed route; fixed stops; rare unwanted stops; maximum speed 25 to 

45 km/h; average speed 20 to 30 km/h; required own infrastructure. 

Bus: fixed route; fixed stops; often makes unexpected stops; maximum 
speed 100 km/h; average speed 30 km/h; requires no unique infrastructure. 

Auto:  no fixed routes; no fixed stops; makes many unexpected stops; 

maximum speed 120 km/h; average speed 40 km/h; requires no unique 

infrastructure. 

Gilani (2005) Walk, bike, bus, car Uses algorithm that predicts mode as soon as data comes to the server using 

travel speed.  Classifies the percentage of a trip that is below walk and bike 

top speed as walk percentage and bike percentage, respectively.  Where walk 

percentage is > 90%, walk is identified, followed by bus is > 70%, if not 

bus, then bike if > 90% is bike percentage, otherwise, auto mode.  

Gonzalez 

(2008) 

Car, bus, walk 

 

Method 1 uses neural network, a Multi-Layer Perception.  Inputs include: 

average speed, maximum speed, estimated horizontal accuracy uncertainty, 

percent Cell-ID fixes, standard deviation of distance between stop locations 

and average dwell time.  
Method 2 uses only critical points and the following inputs: 

Average acceleration, maximum acceleration, average speed, maximum 

speed, ratio of the number of critical points over the total distance of the 

trips, ratio of the number of critical points over the total time of the trip, total 

distance, and average distance between critical points.   

Method 3 uses a modified version of the critical points that collected the 

velocity and time of the GPS point immediately before or after a currently 

identified critical point.    

Lawson 

(2008) 

Walk, train, auto, 

bus 

Original kml GPS file is converted and imported to Excel as comma-

delimited file and “cleaned” for points with reasonable positional accuracy.  

Computed cumulative distance of travel from start of a trip and plot this 

distance over time using colors to represent data quality.  A new kml is 

created from “good” points with time stamp references.  Output to Google 
and compare with traveler narratives.  Associate patterns with modes.   

If current mode is “walking”: Find the data point where slope (computed as 

avg. speed over 2 minutes from a given data point) changes to above 4 

km/hr, or when the signal disappears.  

If current mode is “train” and current data point is bad, find the next good 

data point. 

If current mode is “train” and current data point is not bad (not 

underground), or if the current mode is “vehicle” (bus or train not yet 

determined), find the data point where slope reduces to 2 km/hr, and then 

further determine the exact data point where speed is zero for at least 20 

seconds, or when the signal disappears.   
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(Table 2 continued) 
 

1st Author 

(year)  

 

 

Modes Identified 

 

Process Implemented 

Lawson 

(2008) – 

continued 

 

 Compute time difference, cumulative distance traveled and average speed 

for segment.  If current mode is “train”, and speed at segment end is not 

zero, then go to step a. to look for a new segment, end. The train has gone 

from underground to above ground, but the mode is still “train”.  If current 

mode is “vehicle”, then track change in heading over 5 second intervals for 

the entire segment. If the heading changes sharply (less than 50 degrees (or 

greater than 310 degrees) over 5 seconds, then the vehicle is not a train. Set 

mode to “bus”.  Record current segment mode, start and end times. Set 

current segment end as next segment start and proceed with the loop.  
Once the entire data set has been looped through, check the output trip 

summary for completeness and accuracy.  If multiple sequential segments 

are of the same mode and have less than 1 minute intervals between them, 

then combine them into one mode.  

Schuessler 

(2009) 

Upadhyay 

(2008) 

Walk, cycle, auto, 

public transport 

(bus/tram), rail 

Open source fuzzy engine uses the following:  median of the speed 

distribution with four membership functions, and 95th percentiles of the 

speed and acceleration distributions, with three membership functions each.  

Fuzzy rules are derived to characterize modes, followed by defuzzify 

method that calculates the likelihood for each mode based on all mode 

scores.  The third step determines the reasonability of the derived mode 

chains.   
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PART TWO 

 
 

METHODOLOGICAL ANALYSIS 

 
Introduction 

 

Across the various studies, the methodologies used to identify modes from GPS trace data fall 

into three basic methodologies.  These methodologies are rule-based, neural networks, and fuzzy 

logic.  These methods each have distinctive characteristics, with advantages and disadvantages 

associated with their use and effectiveness.     

 

Methodology Descriptions 

 

Rule-based mode detection can be accomplished using a series of hierarchical rules.  These rules 

first attempt to identify the most prevalent and most easily identifiable modes (e.g., walking), 

then progressively bring in more data and complicated analysis to identify the more difficult 

modes (e.g., subway and rail).  This approach to mode detection is the most prevalent in the 

literature (Chung and Shalaby 2005; Gilani 2005; Clifford, Zhang et al. 2008; Stopher, Clifford 

et al. 2008a; Bialostozky 2009), but the specific rules in each model differ drastically.  The input 

parameters and datasets are often distinct in the different mode detection methodologies. Most 

notably, numerous methods use geographic data incorporated in a GIS system (Stopher, 

FitzGerald et al. 2008b; Bialostozky 2009), such as the location of bus stops/routes and subway 

lines.  Other approaches (de Jong and Mensonides 2003; Zheng, Liu et al. 2008) apply a less 

data-intensive approach and use rules associated with the speed, acceleration, time of day and the 

distance between arrival and destination points.    

 

Neural networks are distinctly different from traditional rule-based approaches.  One method in 

the literature implemented a neural network to determine the travel mode (Gonzalez, Weinstein 

et al. 2008).  Neural networks are a common technique used in artificial intelligence applications, 

based on a simplified model of neuron function in the brain.  The main advantage of using neural 

networks, compared to other techniques, is adaptability across a wide range of different datasets 

and ability to exploit subtle patterns to make predictions, given a well-formed training dataset. 

 

A neural network typically consists of three layers: input, output and the hidden layer.  An input 

layer contains the values of the different variables thought to be useful in determining the output, 

such as average speed, acceleration, etc.   An output layer reflects the possible range of results, 

such as different mode choices (e.g., walking, auto, bus, subway).  An additional layer, called the 

hidden layer, serves as the location for intermediate connection nodes between the input layer 

and the output layer.  Proper training is vitally important in effective use of a neural network.  

During training, a technique known as back propagation is used, in which the relative weights 

between the different nodes in each layer are adjusted based on correct or incorrect matching 

between the predicted output and the correct output.  If a certain configuration of weights  
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between the different nodes successfully predicts the correct output, the weights are 

strengthened, while an incorrect response negatively adjusts the values of the weights.  After 

sufficient and comprehensive training, particular adjustments of weights are chosen to reflect the 

highest probability of successfully predicting the correct mode choice, based on a set of input 

parameters. 

 

The third methodology, fuzzy logic, is derived from the fact that the methodology does not view 

the world in terms of absolutes.  Fuzzy logic was designed for imprecise situations, which cannot 

be defined with typical Boolean logic of true and false.  Fuzzy logic allows for approximating 

values between the values of zero and one.  For instance, for a GPS trip, the median travel speed 

can be defined in terms of slow, medium, or fast.  In everyday situations, people typically do not 

reason that there is an exact cut-off between someone traveling slowly and fast.  In other words, 

it would not be logical to consider that someone traveling at 20 miles per hour is traveling slowly 

and someone traveling at 25 miles per hour is traveling fast.  Instead, everyday reasoning 

consists of various degrees or levels.  In fuzzy logic this might be describe someone traveling at 

25 miles per hour as 0.6 fast and 0.4 slow.   

 

Table 3 reports the mode identification effectiveness with rule-based methods, the most 

prevalent methodology. The vast majority of the rule-based algorithms were implemented using 

information gathered from geographic information systems (GIS), (e.g., the location of bus stops 

or rail lines).  This is in contrast to research conducted by Tsui and Shalaby (2006) which found 

no difference in performance between GIS-based approaches and less data-intensive algorithms 

that do not rely on GIS.  Relatively simple rules appear to predict about 70% of the travel modes 

(Bohte and Maat 2009). In particular, using basic rules derived from maximum speed and 

acceleration, one can easily identify walking trips with greater than 95% accuracy (Lawson, 

Chen et al. 2008; Stopher, Clifford et al. 2008a; Bialostozky 2009).  A variation of rule-based 

methods using fuzzy-logic was also found in the literature review (Tsui and Shalaby 2006; 

Upadhyay, Schuessler et al. 2008).   

 

There is little consistency in results between the different methodologies shown in the literature 

(rule-based, neural networks, and fuzzy logic).  Comparing the methodologies for effectiveness, 

given the variation in the data components and mode choice opportunities, creates some 

uncertainty with respect to the best performing strategy.  There are also concerns where only the 

overall effectiveness is reported (e.g., Stopher, FitzGerald et al. 2008b).  The rule-based results 

range from a low of 70% overall, to 97%.  The neural networks study includes only three 

possible modes (Gonzalez 2008), while the fuzzy logic, with and without GIS, appears to have 

the same overall outcomes (Tsui and Shalaby 2006).  Because of these variations, it is necessary 

to conduct a controlled experiment, using a single dataset, and applying the three possible 

methodologies to the same dataset, measuring the accuracy and ease-of-use of the difference 

algorithmic approaches. 
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Table 3.  Effectiveness of Reported Mode Identification 
1st author 
(year) 

Method Over-

all 

Walk Bike Bus Street-
car 

Subway Rail Und 
T* 

Auto Other 

Bialostozky 

(2009) 

Rule-

based  

with GIS 

79% 92% -- 54% -- 68% 29% 83% 96% -- 

Bothe 

(2009) 

Rule-

based  

with GIS 

70% 68% 72% 0% -- -- 34% -- 75% 7% 

Chung 

(2005) 

Rule-

based  

with GIS 

92% 100% 100% 80% -- -- -- -- 88% -- 

Giliani 

(2005) 

Rule-

based  

with GIS 

97% 100% 96% 92% -- -- -- -- 100

% 

-- 

Gonzalez 

(2008) 

Neural 

Networks 
91% 100% -- 82% -- -- -- -- 92% -- 

Stopher 

(2008b) 

Rule-

based  
with GIS 

95% NR** NR NR -- NR NR NR NR NR 

Tsui 

(method 1) 

(2006) 

Fuzzy 

Logic  

no GIS 

91% 97% 86% 76% -- -- -- -- 97% -- 

Tsui 

(method 2a) 

(2006) 

Fuzzy 

Logic  

with GIS 

91% 98% 72% 80% 88% -- -- -- 97% -- 

Tsui 

(method 2b) 

(2006) 

Fuzzy 

Logic  

with GIS 

94% 98% 86% 80% 88% -- -- -- 99% -- 

*Underground transfer 

**Not Reported 
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PART THREE 

 

 

EVALUATION OF GPS MODE DETECTION STRATEGIES 
 

 

Introduction 

 

Comparing the methodologies for effectiveness, given the variation in the data components and 

mode choice opportunities, creates some uncertainty with respect to the best-performing strategy.  

There are also concerns where only the overall effectiveness is reported (e.g., Stopher, 

FitzGerald et al. 2008b).  In order to control for the variation in datasets, an experiment was 

performed using a single dataset applied to a rule-based method, a neural networks method and a 

fuzzy logic method.   

 

 

Data Collection and Preparation  

 

The first step for any study that relies upon GPS trace data is to select the appropriate unit for 

gathering the data.  A review of a variety of equipment (GPS loggers) and an extensive test of 

two of them by Lawson, Chen et al. (2008) found the high-quality chipset in the I-Blue 747 

received satellite signals and logged location points successfully, except in underground subways 

and tunnels.  The demonstrated accuracy of the I-Blue 747 was from 2.5 to 3 meters, although 

the accuracy was affected by the urban canyon effect in downtown and midtown Manhattan.  

One of the outstanding aspects of the I-Blue 747 was its ability to provide many data fields, (e.g., 

number of satellites used and horizontal dilution of precision).  These fields can be used to 

remove low quality of location points. 

 

The second step is to recruit survey participants.  The principal criterion for sample selection is 

to ensure complete coverage of all modes, not necessarily requiring a randomly sampled 

population.   For this study, 24 individuals from the City University of New York were recruited.  

They were asked to carry an on-body GPS unit for a period of five weekdays.  Each GPS unit 

was configured to automatically log the person’s position every 5 seconds, along with the date 

and time, latitude, longitude, speed, etc.   

 

Each respondent was asked to turn on the GPS unit at the beginning of each day and carry the 

unit at all times.  Additionally, survey participants were also asked to fill out a travel log for one 

designated travel survey day.  Data collected in the travel log included each person’s contact 

information, auto ownership, frequently visited locations, and all the activities and trips made 

during that day. For each activity and trip, detailed information was requested, (e.g., the location 

name, exact address or intersection, mode taken to access the activity site, departure and arrival 

time, and purpose of the trip). 

  



PART THREE: EVALUATION OF GPS MODE DETECTION STRATEGIES    3 - 2 

 

The primary purpose of requiring survey participants to fill out a travel log was to generate a 

validation set, which contained the self-reported travel modes taken for each trip.  Special post-

processing of the travel log was carried out to verify the reported travel patterns; if unverified, 

the travel diary may be prone to errors.  Close visual inspection of all completed travel logs was 

performed to identify problems (e.g., missed trips and illogical mode sequences, etc.), as 

complete and correct information was needed for this research. 

 

GPS points of poor quality were removed from the data set in a preprocessing step. To clean the 

data, a four-layer data filtering process was utilized, based on the work of Tsui and Shalaby 

(2006). This approach was designed to systematically remove points with significantly high 

error.  For example,  the first layer removes GPS points with fewer than three satellites in view; 

then the second layer removes records that have a horizontal dilution of precision (HDOP) high 

than five.  This ensures that the satellites were well dispersed.  To further ensure that the speed 

and heading information was accurate, records that have a zero heading and speed were also 

removed.  The fourth filter, originally developed by Chung and Shalaby (2005), removed GPS 

points that were likely to be erroneous due to the “urban canyon effect”, which caused fictitious 

jumps in the GPS trace data.  Since the experimental dataset was collected in a highly 

concentrated setting in the New York City metropolitan area, it was especially important to 

remove these points.  Therefore, GPS records that exhibit illogical jumps were also removed.   

 

After preprocessing the data to remove inaccurate GPS locations, an additional preprocessing 

step was performed to segment the original GPS data into individual trips.  A trip end was 

defined in this study as occurring any time there was no movement for a period of 120 seconds 

or more (Stopher, Clifford et al. 2008a).  Software was written using Visual Basic for 

Applications (VBA) in ArcGIS 9.3, to identify the trip ends.  To determine whether or not there 

was movement, each point was buffered by 50 meters.  If no GPS point was outside the buffer 

within a 120 second duration, then the centroid of the points within the buffer was identified as 

the trip end.   

 

After uploading the survey participant’s GPS trace data and running the data cleaning and trip 

segmentation steps, each trip was compared directly against the travel log.   Not all trips 

identified from the GPS unit were present in the travel log; conversely, not all trips in the travel 

log were present in the GPS data.  These inconsistencies may have been due to a failure of the 

participants to record trips in the travel log, or there was imprecise information derived from the 

GPS units.  GPS errors also result from the urban canyon effect, cold-start problems, or the 

individual not remaining at a destination for a prolonged period of time (at least 120 seconds), as 

is sometimes the case when picking up a cup of coffee or fast food. 

 

A total of 101 trips were identified that accurately matched information written in the travel logs.  

Other trips were omitted due to the inability to determine the correct travel mode based on travel 

logs and manual inspection of the GPS data.  Bialostozky (2009) also used this dataset in his 

work.  Figure 1 provides an example of the data features:  the GPS trace, the reported frequently 

visited locations and the locations recorded in the logs.   
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Figure 1.  Display of data elements collected  

 

 

 

Method One: Rule-based GIS Approach 

 

The rule-based approach was primarily based on the work of Bialostozky (2009) and relied on a 

hierarchical-rule based detection scheme that depends heavily on data derived from GIS.   GPS 

traces (shown in Figure 2) were processed in GIS software to detect travel patterns.  Once trip 

segments were identified, the developed algorithm attempted to detect the mode used on each 

segment, according to a set of criteria based on the characteristics of each mode. The algorithm 

first attempted to identify walking segments. This was because walking segment identification 

was also essential in trip segmentation.  Detection of the walking mode relied on three primary 

characteristics: a) a pedestrian must walk on a pedestrian-accessible link, which  
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requires map-matching;  b) the travel time must be longer than 60s (Schuessler and Axhausen 

2009); and c) the walking speed cannot exceed 10 km/hr (Stopher, FitzGerald et al. 2008b).  

After walking segments were identified, the algorithm proceeded to determine if any of the 

remaining segments were made by subway or rail. This is relatively easy, as trips made by 

subway or rail exhibit a distinctive pattern compared to on-street modes, such as auto and bus. 

Subway or rail trips must occur on subway or rail links; the change of mode must occur near a 

subway stop or a rail stop; and some parts of the trips may be underground and thus received no 

GPS signals. 

 

The primary criterion to distinguish between auto and bus trips was that buses travel on bus 

routes and stop at bus stops.  However, the latter criterion can be complicated by congestion and 

signal delays, during which the bus will stop. In fact, these slow-moving and stopping bus 

segments were likely to be classified as walking segments in the earlier step. The algorithm 

addresses this problem by searching any three consecutive segments within one trip with the 

pattern of street-walk-street where the middle walking segment is less than 5 minutes long and 

then combines them into one street mode (bus or auto). This criterion was applied based on the 

reality that a trip that involves both auto and bus modes separated by a brief walking segment 

were rare -- but could occur in New York City, indicating a transfer from one bus to another.   

 

 

 

 

Figure 2: GPS trace (red) in GIS software 
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Method One:  Results   

 

Among the five modes, the auto mode achieved the highest success rate, 96% (see Table 3).  Trip 

segments made by walking also had a high success rate; 92%, or 161 out of 176 trip segments 

were correctly identified.  Subway and bus, serving similar trips in terms of trip distance, 

received similar success rates, 68% and 53% respectively.  Rail achieved the lowest success rate, 

only 29%.  Out of 14 rail segments, only 4 were correctly diagnosed. When an underground 

subway trip segment immediately followed or preceded an underground rail segment (e.g., 

Grand Central Station), no signal was received during the entire course during which a mode 

transfer was made. These segments were designated as “Und. T”, to indicate “underground 

transfer.”  Using GPS traces collected near the subway and rail stations when a subject entered or 

exited from a station, the developed GPS algorithm was able to identify 83% of these 

underground transfer segments. 

 

 

Method Two: Neural Networks 

 

To test the effectiveness of a neural network on detecting mode choices, a neural network was 

implemented to replicate research previously described by Gonzalez et al. (2008).   The Multi-

Layer Perception neural network was utilized using open-sourced software call Weka (Witten, 

Frank et al. 1999), commonly used in data mining applications.  The input layer consists of four 

input parameters: 

 

Input Parameters: 

 

 Average Speed 

 Maximum Speed 

 Estimated Horizontal Accuracy Uncertainty 

 Distance between the start and end of trip 

 

The estimated horizontal accuracy uncertainty is a measurement of the estimated confidence of a 

calculated GPS position. Different modes of transportation have different values for estimated 

horizontal accuracy uncertainty. For example, a subway has the worst estimated horizontal 

accuracy uncertainty since it is underground and therefore obstructs the GPS signals. On the 

other hand, a walking trip has the best estimated horizontal accuracy uncertainty since typical 

GPS signal obstruction is most likely caused only by clothing, bag or purse.   

 

The input parameters differ slightly from the variables outlined in Gonzalez, Weinstein et al. 

(2008), to reflect the complex, urban setting of the experimental dataset.  Gonzalez, Weinstein et 

al. (2008) included two additional variables, the standard deviation of the distances between stop 

locations and the average dwell time.  When these same variables were used with the 

experimental dataset, the results did not yield a higher success rate.  These values were included 

primarily to distinguish between auto and bus modes.  However, buses and autos were found to 

follow similar stop and go patterns in New York City, due to the high volume of traffic.  

Therefore, the neural network was not able to accurately distinguish between these two modes.  

To address this, an additional variable of distance between the start and end of the trip was found 

to be effective in determining the mode, since individuals tend to take autos and subway/rail 

farther than buses.   A depiction of the neural network used is shown in Figure 3. 
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Figure 3: Depiction of the neural network used to predict travel mode 

 

To train the neural network, a file was loaded into the Multi-Layer Perception neural network 

that contained the input parameters of each GPS trip, along with the correct answer.  A 10-fold 

cross validation technique was used to assign weights and test the effectiveness of the network.  

The N-fold cross-validation randomly partitions the data into N-folds.  Each fold served as the 

testing data set, while the remaining N-1 folds were used as the training data set.  The process 

was repeated N times – once for each fold (Kohavi 1995).  The result was the average success 

rate from the model from the N iterations.  

 

Two input parameters, learning rate and training time, were varied to determine the effect on 

resulting accuracy in predicting trip mode.  The learning rate corresponds to the degree of change 

occurring in the weights between nodes in the neural network.  Possible values for the learning 

rate range between zero and one, with zero indicating no change to the edge weights during the 

training iterations, and one indicating complete change.  The greater the learning rate, the greater 

the degree of change during the training process.   The training time was the number of times the 

entire training dataset was used to adjust the weights in the neural network.  A single iteration of 

the entire training dataset was considered one epoch.  A large training time (number of epochs) 

corresponded to more processing time and usually more accurate results. 

 

Method Two:  Results   

 

The overall success rate of predicting mode choice was very similar to the approach described in 

Gonzalez, Weinstein et al. (2008).  Using input parameters of 0.3 as the learning rate and a 

training time of 500 epochs, the overall success rate of our implementation was 84% compared 

to 85.4% in the Gonzalez research, using the same parameters.  Some input parameters hindered 

the overall success rate; when using a 0.1 learning rate and a training time of 300 epochs, the 

overall performance was 82% compared to 88.6% for Gonzalez.  The consistency of 

performance between the two implementations provides additional evidence that the neural 

network technique was replicable in a distinctly different geographic location.  However, some  
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drawbacks were apparent, as shown in Table 4.  For instance, the success rate for auto and bus 

trips was typically around 60%, and depending on the neural network training parameters, the 

results could be much lower.  Typically, the neural network confused auto and bus trips, since 

the input parameters followed a similar pattern.  Walking was the most frequent travel mode in 

our dataset, consisting of 60% of the trips in the dataset.  Walking was also the most easily 

distinguishable travel mode, while subway trips were detected with the second highest success 

rate. 

 

 

Method Three:  Fuzzy Logic 

 

Research has been conducted in using fuzzy logic to automatically determine travel modes based 

on GPS trajectory data (Tsui and Shalaby 2006; Schuessler and Axhausen 2009).  To define this 

logic, a series of input variables are described and modeled in terms of their fuzzy logic values.  

Attributes determined from each GPS trip are used to predict the travel mode.  The Schuessler-

Axhausen algorithm used three input variables: 

 

  Schuessler-Axhausen input variables: 

 

 Median Speed 

 95
th
 Percentile Speed 

 95
th
 Percentile Acceleration 

 

A trapezoidal membership function represented the different levels of the fuzzy variables.  This 

function was defined by four control points, the starting point, the left top corner, the right top 

corner and the end point (Upadhyay, Schuessler et al. 2008), and is shown in Figure 4.  Each of 

the input variables were described using three or four membership functions.  Once the variables 

were described, using the membership functions, rules were used to predict the travel mode. 

 

 

Figure 4: Example of a fuzzy logic rule to classify acceleration 
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The fuzzy logic technique, described in the Schuessler-Axhausen algorithm, was used and 

compared, using the experimental dataset.  The input variables and membership functions were 

the same as those described by Schuessler and Axhausen (2009).  Some of the rules needed to be 

modified to reflect the standardized dataset, however.  Since the experimental dataset contained 

no bike trips, rules representing biking outcomes were changed to walking.   

 

Method Three:  Results   

 

The fuzzy logic rules appear to work reasonably well in detecting the walking trips, as indicated 

with a success rate of 91%.  However, results in detecting subway trips were very poor, with 

only a 26% success rate.  Furthermore, due to the similar driving behavior of autos and buses in 

New York City (in terms of speed and acceleration), the fuzzy logic rules could not accurately 

distinguish between the two modes (see Fuzzy Logic, method 1 - Table 4).   When combining 

autos and buses into a single mode called “vehicle”, the success rate was 85% (see Fuzzy Logic, 

method 2 - Table 4).   

   

 

Comparative Results 

 

The mode detection algorithms produced various success rates for detecting different modes.  In 

some respects, the most effective algorithm was the neural network approach (method 1), with an 

overall success rate of 84% and the ability to distinguish between four different modes.  This is 

slightly higher than the overall success rate of the rule-based GIS approach (79%).   However, 

the rule-based algorithm had the ability to detect a larger number of mode choices, such as rail 

and underground transfers.  The fuzzy logic implementation had the highest success rate, but was 

unable to distinguish between bus and auto, and had a very low subway success rate.  For 

individual modes, the neural networks (method 1) had the highest success rate for walking, bus, 

and subway, but a lower success rate for autos.  Additional metrics beyond simply measuring the 

overall success rate are needed accurately rate the effectiveness of each approach. These metrics 

are discussed in the following section.   

 

 

Table 4: Success Rate of Mode Detection Algorithms 

Method Overall Walk Bus Auto Subway Rail Und 

T* 

Rule-based w/ GIS 79% 92% 54% 96% 68% 29% 83% 

Neural Networks 

(method 1) 

84% 97% 60% 59% 88% -- -- 

Neural Networks 

(method 2) 

82% 96.6% 23.4% 70.6% 88.0% -- -- 

Fuzzy Logic 

(method 1) 
67% 86% 21% 53% 17% -- -- 

Fuzzy Logic 

(method 2) 
87% 91% 85%** 26% -- -- 

       *Underground transfer 

       ** Vehicle 
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Discussion 

 

In addition to the success rates listed in Table 4, there are other trade-offs regarding the ease-of-

use for each approach.  Data-intensive approaches, (e.g., Bialostozky 2009), could prevent wide-

spread adoption of this methodology.  This approach requires extensive data pre-processing, 

using geographic information systems (GIS), and the development of a complex series of rules, 

fine-tuned to fit a particular dataset. These rules could easily fail to achieve high success rates 

when applied to another geographic region.  In addition, geographic features need to be included 

in the processing (e.g., stops and routes of all buses, subways and rail locations).  In contrast, the 

neural network approach, outlined by Gonzalez, Weinstein et al. (2008) and replicated in this 

research, does not require extensive data preparation.  Instead, a substantial training dataset, that 

is representative of the input data, is required.    

  

In this study, neural networks were shown to be the most replicable method implemented based 

on ease-of-use and overall effectiveness.  A similar success rate to Gonzalez, Weinstein et al. 

(2008) was obtained simply by extracting the variables, training the network, and running the 

neural network software called Weka.  The entire process took a mere two days.  In contrast, 

implementation of the rule-based GIS method, outlined in Bialostozky (2009) and similar to 

Clifford, Zhang et al. (2008), took numerous researchers months of labor and data-intensive 

work to develop a series of effective rules.  To replicate the GIS-intensive results in another 

region would require extensive data collection and pre-processing.   

 

The success of neural networks in predicting travel mode, along with the methods ease-of-use, 

emphasizes the need for other machine learning approaches to be applied to this area of research.  

Machine learning techniques have been shown to be applicable across a wide variety of datasets, 

by using automated training methods.  Future research will need to consider a hybrid approach to 

providing a methodology that simultaneously reduces respondent burden, processing burden, and 

resource consumption.   

 

 

Conclusions 

 

Determining travel mode is important in a variety of transportation planning applications, 

particularly transportation models.  Traditionally, this data has been collected in travel diaries 

and retrieved by telephone, requiring survey participants to remember and report their travel 

behavior.  Recent work suggests that most of these data could be collected by replacing or 

supplementing traditional survey methods with passive data collection using GPS trace data.  By 

leveraging GPS technology, the accuracy of transportation models could be improved by 

eliminating human error in reporting.  While research has been conducted to facilitate automatic 

determination of travel mode, results were mixed and algorithm replication was rare.   
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This study replicated three algorithms, using a dataset collected in the complex urban 

environment of New York City.  By replicating these algorithms, our results indicate that 

methodologies that rely heavily on pre-defined rules were often ineffective in achieving high 

success rate on different datasets.   Machine learning techniques, such as neural networks, could 

often achieve high success rates across diverse datasets.  These approaches avoid the manually-

intensive efforts often associated with data-centric algorithms that rely heavily on geographic 

variables and combinations of spatial datasets in order to detect modes from GPS trace data.   

 

To implement the use of GPS trace data as a substitute for traditional or modified travel surveys -

- moving from small sample feasibility studies to agency-level implementation -- there needs to 

be sufficient evidence that GPS trace data will meet the recognized challenges.  It will be 

necessary to prove that GPS trace data can be handled with ease, and that the promise of reduced 

respondent and processing burden, can be realized.  
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