Coastal Geomorphology & Coastal Dynamics Spring 2007 Field Trip Schedule

<u>Montauk</u>

Saturday March 31th Sunday April 15th Saturday April 28th

	Linear Wave Theory (H/L is small)
$C = \frac{L}{T}$	Wave speed or celerity
$C = \frac{gT}{2\pi} \tanh\left(\frac{2\pi d}{L}\right)$	Dispersion Relationship : relates wave celerity to period, wavelength, and water depth
$C_0 = \frac{gT}{2\pi}$	Deep water wave speed is a function of period only
$L_0 = \frac{gT^2}{2\pi}$	In deep water wavelength is a function of period. In shallow water it is a function of period and water depth, and must be solved iteratively.
$C = \sqrt{gd}$	Shallow water wave speed is constrained by water depth

1000 Brees	4096 1024 256 64 16		-20 -12 -10 -8	Bouider (-8 to -12())	
1000 Brosson	256 64 16				
Too Eroson	16			Pebble (-6 to -84)	
100		I	1	Pebble (-2 to -6e)	1
§	3.36 2.83 2.38		-1.75 -1.50 -1.25	Gravel	
Transportation Deposition	2,00 1,68 1,41 1,19		-0.75 -0.50 -0.25	Very coarse sand	
	0.84 0.71 0.59		0.25 0.50 0.75	Coarse sand	
Diameter (mm)	0.42 0.35 0.30	420 350 300	1.00 1.25 1.50 1.75	Medium sand	1
Current verocities for erosico, sedimentation a fransport 0.01 0.1 1.0 10 100 m/s 10 publics 0 damber	1/4 -0.25 0.210 0.177 0.149	250 210 177 149	2.00 2.25 2.50 2.75	Fine sand	
sedimentation + erosion	1/8 -0.125 0.105 0.088 0.074	125 105 88 74	3.00 3.25 3.50 3.75	Very fine sand	
sand material 0.1	1/16 -0.0625 0.0530 0.0440 0.0370	63 53 44 37	4.00 4.25 4.50 4.75	Coarse sit	
transportation erosion 0.01	1/32 - 0.0310 1/64 0.0158 1/128 0.0078	15.6 7.8	6 7	Medium sit Fine sit Very fine sit	
diay 0.001	1.256 -0.0039 0.0020 0.00098 0.00049	3.9 2.0 0.98 0.49	8 9 10 11	Clay	