

Natural Sediment Bypassing which sand is transported across the inlet from the sand is transported across the sand is tr

Bypassing: process in which sand is transported across the inlet from the updrift barrier to the down-drift beaches.

Bruun & Gerritsen, 1959

- Wave driven transport
 around the periphery of the
 ebb-shoal complex
- 2. Tidal flushing through the throat of the inlet
- Bypassing through migration of bar complexes and shifting of main channel

Ebb Shoal Complex

Natural Sediment Bypassing (Bruun & Gerritsen, 1959)

 $r = P/M_{tot}$

bypassing ratio r. P: spring tidal prism

 M_{tot} : gross littoral transport to the inlet

r< 20 unstable inlet; inlet may be closed occasionally during a storm event because the tidal prism is relatively small

inlet with many bars (typical wave-dominated bar-bypassing system) and highly changeable channels; inlets are relatively unstable and dredging/structures are often required r = 20-50

inlet with well-developed ebb delta and one or more channels (bar and flow-bypassing system, mixed energy) r = 50-150

r>150 inlet is typical flow-bypassing system (tide-dominated); stable

Width = 244 m Semidiurnal Tide Mean Range = 0.88 m Spring Range = 1.1 m Prism = $3.29 \times 10^7 \text{ m}^3$

Wave Climate; H = 1 m, T = 7 s, SE Gross Transport = 305,000 m³/yr

r = 108: inlet with well-developed ebb delta and one or more channels (bar and flow-bypassing system, mixed energy)

Barrier Island Types, Relation to Bypassing

Overlapping Barrier

Downdrift Offset Barrier

Updrift Offset Barrier

Negligible Offset Barrier

Equilibrium, Tidal Inlet Relationships Inlets are evolving toward a dynamic state of equilibrium Initial rate of growth of ebb and flood shoal complexes is rapid The growth rate decreases as inlets develop more permanent morphologic features and establish bypassing pathways The time it takes the inlet to reach equilibrium depends on the tidal prism, wave climate, and anthropogenic influences on the system (mainly dredging). As sea level rises can dynamic equilibrium be obtained?

Author	Morphologic feature or relation	Relationship	
LeConte (1905), O'Brien (1931, 1969),	Minimum channel cross-sectional area,	$A_C = C_1P^*$	
Johnson (1972); Riedel and Gourlay (1980),	AC (note: LeConte, Riedel and Gourlay,		
Hume and Herdendorf (1990), etc.	and Hume and Herdendorf consider the		
	longshore transport rate magnitude)		
Escoffier (1940)	Inlet cross-sectional area stability	Closure curve	
Bruun and Gerntsen (1959, 1960)	Inlet stability, sand bypassing type	P/Q_0	
Floyd (1968), Floyd and Drucry (1976)	Minimum entrance bar (ebb shoal)	linear	
	depth vs. channel depth; bar distance		
	offshore vs. channel depth		
Jarrett (1976)	Minimum channel cross-sectional area,	$A_C = C_2 P^*$	
	with and without jetties		
Walton and Adams (1976),	Equilibrium ebb shoal volume, F_E (note:	$V_E - C_3 P^m$	
Marino and Mehta (1987)	separate relations according to wave climate)		
Shigemura (1981)	Equilibrium throat width, W	$W-C_4P^*$	
Gibeaut and Davis (1993)	Equilibrium obb shoul arm, A _E	$A_E = C_5 P^A$	
Kraus (1998)	Derivation of minimum channel cross-sectional	$A_C = C_2P^*$	
	area relation [note: includes longshore sediment		
	transport rate in C_2		
Carr de Betts and Mehta (2001)	Flood shoal area, A_F , and volume, V_F	$A_{\rm F} - C_{\rm e} P^{\sigma}$	
		$F_F = C_2 P^q$	

Cross-Sectional Area and Tidal Prism Relationship, Jarrett, 1976)

 $Ac = C*P^n$

Ac = minimum cross-sectional area (m²) P = tidal prism (m³) C and n = correlation coefficients (jetties)

Regression values found by Jarrett (1976) for $A_E = CP^{fr}$ (m ² , tidal inlets on U.S. coasts)							
	All Inlets		Unjettied, Single-Jettied		Dual Jettied		
Location	С	n	С	n	С	n	
All Inlets	1.576×10 ⁻⁴	0.95	3.797×10 ⁻⁵	1.03	7.490×10 ⁻⁴	0.86	
Atlantic Coast	3.039×10 ⁻⁵	1.05	2 261 × 10 ⁻⁵	1.07	1.584 × 10 ⁻⁴	0.95	
Gulf Coast	9.311 ×10 ⁻⁴	0.84	6.992×10 ⁻⁴	0.86	Insuff.data	Insuff. data	
Pacific Coast	2.833×10 ⁻⁴	0.91	8.950×10 ⁻⁶	1.10	1.015×10 ⁻³	0.85	

Prism = $3.29 \times 10^7 \text{ m}^3$ Wave Climate: H = 1 m. T = 7 s. SE

dual jettied inlet

C and n are 1.58×10^{-4} and 0.95Ac equilibrium = 2,188 m²

Ac 1994 = 1,551 m² Ac 1998 = 1,566 m²

inlet is scouring toward the predicted equilibrium flow area

Walton and Adams, Ebb-Shoal Volume

Determined a relationship between tidal prism (P) and the volume of sand contained within the ebb-shoal complex for inlets in equilibrium.

 $V_{ebb} = C^*P^n$

Vebb = volume of equilibrium ebb shoal yd³

P = tidal prism (ft³)

C,n = correlation coefficients based on energy regime

 $H_s^2T^2$

Hs = significant wave height
T = significant wave period

Walton and Adams, Ebb-Shoal Volume

C,n = correlation coefficients based on energy regime

 $H_s^2T^2$

 $H_{\rm s}^{2}{\rm T}^{2}$ 0 - 30 = mildly exposed coast $H_{\rm s}^{2}{\rm T}^{2}$ 30 - 300 = moderately exposed coast $H_{\rm s}^{2}{\rm T}^{2}$ > 300 = highly exposed coast

n = 1.23

C = 13.8 x 10⁻⁵ mildly exposed coast
C = 10.5 x 10⁻⁵ moderately exposed coast
C = 8.7 x 10⁻⁵ highly exposed coast

Walton and Adams, Ebb-Shoal Volume

V_{ebb} = C*Acⁿ

Vebb = volume of equilibrium ebb shoal yd3

Ac = cross-sectional area (ft²)

C,n = correlation coefficients based on energy regime

n = 1.28

 C =
 45.7
 mildly exposed coast

 C =
 40.7
 moderately exposed coast

 C =
 33.1
 highly exposed coast

Prism = $3.29 \times 10^7 \text{ m}^3$ Wave Climate; H = 1 m, T = 7 s, SE

moderately exposed inlet

 \mathcal{C} and n are 10.5 x 10-5 and 1.23

equilibrium ebb-delta volume = 11,200,000 m3.

1998 (6,463,000 m³) (Morang, 1999).

Shinnecock Inlet approximately 60 % of equilibrium volume.

attain equilibrium in ~ 75 years (Kraus, 2001)

dredging of the $\mbox{ebb-shoal}$ will setback the evolution of the inlet