Chapter 5

Forms of Condensation and Precipitation

Classifying and Naming of clouds

Processes responsible for various forms of precipitation

Cloud Formation

visible aggregate of water droplets, ice crystals, or both adiabatic cooling

Any Form of Condensation

near saturation

cloud condensation nuclei

Cloud Condensation Nuclei:

hygrophobic nuclei = repel water

oils, Teflon, waxy substances

Relative Humidity > 100%

Cloud Classification:3 Basic FormsCirrus:white, thin, wispy, veil or feather-likeCumulus:globular, cauliflower-like structuresStratus:sheet or layer, uniform coverage

Low: below 2000m

Clouds of Vertical Development: extend through more than 1 height range

10 Basic Cloud Types:

Cloud Family and Height	Cloud Type	Characteristics
High clouds—above 6000 m (20,000 ft)	Cirrus (Ci)	Thin, delicate, fibrous ice-crystal clouds. Sometimes appear as hooked filaments called "mares' tails" (cirrus uncinus; Figure 5–3a).
	Cirrostratus (Cs)	Thin sheet of white ice-crystal clouds that may give the sky a milky look. Sometimes produces halos around the Sun and Moon (Figure 5–3b).
	Cirrocumulus (Cc)	Thin, white ice-crystal clouds. In the form of ripples or waves, or globu- lar masses all in a row. May produce a "mackerel sky." Least common of high clouds (Figure 5–3c).
Middle clouds—2000–6000 m (6500 to 20,000 ft)	Altocumulus (Ac)	White to gray clouds often made up of separate globules; "sheepback" clouds (Figure 5–4a).
	Altostratus (As)	Stratified veil of clouds that is generally thin and may produce very light precipitation. When thin, the Sun or Moon may be visible as a "bright spot," but no halos are produced (Figure 5–4b).
Low clouds—below 2000 m (6500 ft)	Stratus (St)	Low uniform layer resembling fog but not resting on the ground. May produce drizzle.
	Stratocumulus (Sc)	Soft, gray clouds in globular patches or rolls. Rolls may join together to make a continuous cloud.
	Nimbostratus (Ns)	Amorphous layer of dark gray clouds. One of the chief precipitation- producing clouds (Figure 5–5).
Clouds of vertical development	Cumulus (Cu)	Dense, billowy clouds often characterized by flat bases. May occur as isolated clouds or closely packed (Figure 5–6).
	Cumulonimbus (Cb)	Towering cloud, sometimes spreading out on top to form an "anvil head." Associated with heavy rainfall, thunder, lightning, hail, and tornadoes (Figure 5–7).

Middle Clouds:

Altocumulus: large patches, white rolls, distinct outlines

Altostratus: formless layer of grayish clouds, some precipitation

Low Clouds:

Stratus: uniform layer covering sky, light precipitation

Stratocumulus: long parallel rolls or globular patches

Nimbostratus: rain clouds, stable conditions, precipitation (light, widespread, long duration)

Fogs Formed By Cooling:

Radiation Fog: radiative cooling

1-2 m thick

pools in valleys

evaporates from ground up

<text><text><text><text><text>

<section-header>

Evaporative Fogs:

Frontal Fog (precipitation fog)

frontal wedging induces rain

increased precipitation could lead to increased evaporation cool air mass is near saturation could result in fog

Dew & Frost:

Air temperature drops below the dew point

Dew Point Temperature $> 0^{\circ}C = dew$

Dew Point Temperature $< 0^{\circ}C = frost$

Object specific

How Precipitation Forms:

Cloud drop ~ 20 micrometers (hair 75 micrometers)

evaporate before striking surface

Rain drop ~ 2000 micrometers (20 mm)

Cor	Idensation nucleus	0	
	0002 minimeters		
	Large cloud droplet	t .	. 0
	· · · ·	p.	
•	Typical cloud dropl 0.02 millimeters		
			. 0
	Typical raindrop 2 millimeters		

Drop Diameter (µm)	Maximum Fall Distance (m)
2500	280,000
1000	42,000
100	150
10	0.033
0	0.0000033

2 Processes: Ice-crystal (Bergeron) process mid latitude super cooled droplets Collision and coalescence process tropics warm clouds

2 Processes:

Ice-crystal (Bergeron) process

pure water suspended in air freezes (-40°C)

supercooled will freeze on contact

freezing nuclei = similar crystal structure to ice

0 to -10	= supercooled water
-10 to -20	= supercooled water and ice
< -20	= mostly ice (cirrus clouds)

2 Processes:

Ice-crystal (Bergeron) process

saturation vapor pressure above supercooled water is greater than above ice

harder for water molecules to leave ice lattice

	Relative Humidity with Respect to:		
ſemperature (°C)	Water	Ice	
0	100%	100%	
- 5	100%	105%	
- 10	100%	110%	
- 15	100%	115%	
- 20	100%	121%	

2 Processes:

Collision and coalescence process

large drops > 20 micrometers collide with slower moving drops

Diameter Fall Velocity			Velocity
Types	(millimeters)	(km/hr)	(miles/hr)
Small cloud droplets	0.01	0.01	0.006
Typical cloud droplets	0.02	0.04	0.03
Large cloud droplets	0.05	0.3	0.2
Drizzle drops	0.5	7	4
Typical rain drops	2.0	23	14
Large rain drops	5.0	33	20

Forms of Precipitation:

Туре	Approximate Size	State of Water	Description
Mist	0.005 to $0.05~\mathrm{mm}$	Liquid	Droplets large enough to be felt on the face when air is moving 1 meter/sec- ond. Associated with stratus clouds.
Drizzle	Less than 0.5 mm	Liquid	Small uniform drops that fall from stratus clouds, generally for several hours.
Rain	0.5 to $5 \mathrm{~mm}$	Liquid	Generally produced by nimbostratus or cumulonimbus clouds. When heavy, size can be highly variable from one place to another.
Sleet	0.5 to 5 mm	Solid	Small, spherical to lumpy ice particles that form when raindrops freeze while falling through a layer of subfreezing air. Because the ice particles are small, any damage is generally minor. Sleet can make travel hazardous.
Glaze	Layers 1 mm to 2 cm thick	Solid	Produced when supercooled raindrops freeze on contact with solid objects. Glaze can form a thick coating of ice having sufficient weight to seriously damage trees and power lines.
Rime	Variable accumulations	Solid	Deposits usually consisting of ice feathers that point into the wind. These delicate frostlike accumulations form as supercooled cloud or fog droplets encounter objects and freeze on contact.
Snow	1 mm to 2 cm	Solid	The crystalline nature of snow allows it to assume many shapes, including six- sided crystals, plates, and needles. Produced in supercooled clouds where water vapor is deposited as ice crystals that remain frozen during their de- scent.
Hail	5 mm to 10 cm or larger	Solid	Precipitation in the form of hard, rounded pellets or irregular lumps of ice. Produced in large convective, cumulonimbus clouds, where frozen ice parti- cles and supercooled water coexist.
Graupel	$2 \mathrm{mm}$ to $5 \mathrm{mm}$	Solid	Sometimes called "soft hail," graupel forms as rime collects on snow crystals to produce irregular masses of "soft" ice. Because these particles are softer than hailstones, they normally flatten out upon impact.

Weather Modification: deliberate changes		
Cloud Seeding	cooling, freezing nuclei	
Fog Dispersal:	mixing, heating, seeding	
Hail Suppression	no effective method	
Frost Prevention	heating (sprinklers, burners), covering	

<text><text><text><text>

Cloud Seeding:

salts: hygroscopic seeding in warm clouds

Orographic seeding: increase precip. 10% snow pack stored in reservoir released during spring thaw