Chapter 13 Air Pollution

Chapter Outline

Historical Perspective
Sources and Types of Air Pollution
Trends in Air Quality
Meteorological Factors Affecting
Acid Precipitation

Air Pollution – Meteorology

•weather conditions influence the dilution and dispersal of air pollutants

of prosperity

•air pollution effects weather and climate

<u>Air Pollution – Meteorology</u>

•Air Pollution Episodes or Events

often occur when there is no major change in the output of contaminants

•Quantity of contaminants emitted into the atmosphere

•Atmospheric conditions promote pollution events

Historical Perspective

- •Air is never perfectly clean
- •Natural sources of pollution have always existed

(ash, salt particles, pollen, spores, smoke from forest and brush fires, wind blown dust etc.)

LANDS

Kansas

Humans accentuate natural pollution

ROOMS AL IS LINES

Similarities among Disasters

- Winter months
- Dense population
- Heavy industrialization
- Often valley
- Temperature inversion
- Stagnant air
- Accident, or mixtures from non-accidents

Sources and Types of Air Pollution

Air pollutants: airborne particles and gasses that occur in concentrations that endanger the health and well-being of organisms or disrupt the orderly functioning of the environment

Primary pollutants: emitted directly from identifiable source

Secondary pollutants: produced in the atmosphere through chemical reactions

Sources and Types of Air Pollution

Primary pollutants:

Point sources factories, power plants

Mobil sources transportation, lawn mowers etc.

Biogenic sources all nonanthropogenic sources (trees, vegetation, gas seeps etc.)

Area sources small and individual sources (dry cleaners)

- 1. Particulate matter:
 - solid particles and liquid droplets found in air
 - Fine particles $(PM_{2.5}) =$ combustion (fuel, wood)
 - Coarse particles (PM₁₀) = aeolian (wind blown), crushing/grinding processes
 - Most obvious form of air pollution (reduce visibility, leave film on surfaces)

2. Sulfur Dioxide (SO₂):

- Colorless, corrosive gas
- Combustion of sulfur-containing fuels (coal, oil)
- Acid precipitation (H_2SO_4)
- Reduced lung function (short-term exposure)

3. Nitrogen Oxides (NO_x):

- High-temperature Combustion (power plants, motor vehicles)
- Acid precipitation (HNO₃)
- Smog Formation

4. Volatile Organic Compounds (VOC):

- Hydrocarbons (carbon and hydrogen)
- Methane (CH_4)
- Incomplete combustion of gasoline
- React with NO_x to form secondary pollutants

- 5. Carbon Monoxide (CO):
 - Colorless, odorless, poisonous
 - Incomplete burning of carbon in fuels
 - Most abundant primary pollutant

6. Lead (Pb):

- Industrial sources
- Automotive sources (leaded gasoline)
- Bio-accumulates in blood, bones, soft tissues
- Damages nervous systems (children high risk)

Secondary pollutants

form as a result of reactions between primary pollutants (acid precipitation, smog)

Smog: 1905 "smoke" & "fog"

- a. London, "Classical" (coal burning, high humidity: smoke and sulfur dioxide)
- b. Los Angeles "Photochemical" Sunlight triggers secondary reactions Ozone major component of photochemical smog

Secondary pollutants

Ozone-photochemical smog-formation limited to daylight hours

acute: *reactions within hours/days* -decreased lung function -chest pain

chronic: gradual deterioration (O) years

- -premature aging of lungs
- -reduction in agricultural crop and commercial forest yields

-overall weakening of forest ecosystems (disease, growth, reproduction)

Trends in Air Quality

- economic activity
- population growth
- meteorological conditions
- regulatory efforts

Clean Air Act 1970 Est. EPA

Clean Air Act of 1970

Particulates Sulfur dioxide Carbon monoxide Nitrogen oxides Ozone Lead (added later)

criteria pollutants

National Ambient Air Quality Standards (Table 13-3)

Example Calculation:

- CO 9 ppm 8-hr average
 - 35 ppm 1-hr average

Comparison of 1970 & 2001 Emissions

Miles driven/yr

Counties Designated "Nonattainment"

for Clean Air Act's National Ambient Air Quality Standards (NAAQS) *

Meteorological Factors Affecting Air Pollution

Wind: dilution of pollutants

Atmospheric stability Surface temperature inversions Inversions aloft

Wind Speed and Dilution of Pollutants

Pollution Episodes more common during calm atmospheric conditions

High wind speed = more turbulent air = rapidly mixed with non-polluted air

Atmospheric stability

-determines the extent to which vertical motions will mix the pollution with cleaner air above

-Mixing depth = vertical distance between Earth's surface and the height to which convectional movements extend

thick mixing depth = cleaner air

Stable air suppresses convectional motions

absolute stability: environmental lapse rate is less than the adiabatic wet rate

Atmospheric stability

-Mixing depth = greatest during summer 'intense solar heating'

-Winter stability enhanced by temperature inversions

Atmospheric stability

-Mixing depth = greatest during summer 'intense solar heating'

-Winter stability enhanced by temperature inversions

Acid Precipitation (Sulfur & Nitrogen Oxides)

Extent and potency of acid precipitation

Effects of acid precipitation

Precipitation pH ranges between 5 - 6

Effects of Acid Precipitation

Human: upper respiratory deterioration, bronchitis among children

Environment: pH increase in lakes, leaching of toxins from soils, fish die off, reduction in crop yields, impair forest productivity

fictims of acid rain - dead and dying Red Spruce in Maine. Photo by Paul Donahue