Chapter 12 – Weather Analysis and Forecasting

The National Weather Service

- The National Weather Service (NWS) is responsible for forecasts several times daily
 - Different weather forecast offices (WFOs) are responsible for their specific region
 - WFOs are also responsible for warnings in their specific region
 - NWS forecasters rely heavily on the Advanced Weather Information Processing System (AWIPS) to understand current conditions and make forecasts

The National Weather Service WFOs

•122 Weather Forecast Offices (CONUS, AK, HI, Guam and Puerto Rico)

The National Weather Service

- A variety of products are created at NWS WFOs
 - Short-term forecasts
 - 7-day zone forecasts
 - Aviation forecasts
 - Marine forecasts
 - Forecast discussions
- Forecasts from now out to a few hours is called **nowcasting**
 - Strongly based on observations (radar, satellite images, surface, observations)
- Forecasts beyond 6 hours is based mostly on numerical weather prediction (NWP) models

Numerical Weather Prediction

- Numerical weather models operate in 3 main phases:
 - 1) Analysis
 - 2) Prediction
 - 3) Post-processing

Progs: prosnostic chart for weather forecast for a specific future period

Numerical Weather Prediction – The Analysis Phase

- A gridded, 3-dimensional analysis is produced with
 - 1) A previous forecast
 - 2) Observations

Numerical Weather Prediction – The Prediction Phase

- The prediction phase of NWP involves calculating the future state of the atmosphere (starting point = the analysis) under the following **governing equations**:
 - Conservation of momentum
 Conservation of mass
 Conservation of energy

Numerical Weather Prediction – The Prediction Phase

- NWP can be classified in 2 ways:
 - Deterministic a single forecast is produced and relied upon
 - Probabilistic many forecasts are produced and forecast probabilities can be generated (ensemble forecasting)

Deterministic vs. Probabilistic Forecasting

Time = 72-hr

Probabilistic Forecasting

- There are several ways to produce probabilistic information but the most viable and popular is ensemble prediction.
- Instead of running one forecast, run a collection (ensemble) of forecasts, each starting from a different initial state or with different physics.
- The variations in the resulting forecasts can be used to estimate the uncertainty of the prediction.
- The ensemble mean is on average more skillful than any individual member.

© 2010 Pearson Education, Inc.

10-day forecasts

The Prediction Phase: Forecasts Gone Bad

There are 2 main sources of error in NWP forecasts:
1) Initial condition error – errors in the analysis stage

2) **Physics errors** – model algorithms, mostly associated with surface processes (radiation, frictional turbulence, convection, clouds), issues of scale (40 km for global models)

Numerical Weather Prediction – The Postprocessing Phase

- The post-processing phase of NWP involves creating graphics of the forecast:
 - 1) 500-mb height
 - 2) SLP
 - 3) Surface wind
 - 4) 3-hr precipitation
 - 5) 1000-500mb thickness

NWP Post-processing

 The final forecast product includes the human factor – judgments based on both a forecaster's experience and NWP

NWP Post-processing

- Model Output Statistics (MOS) a post-processing technique that correlates relationships between a model forecast and reality over many, many forecasts
- MOS produces a forecast incorporating these statistical relationships

Other Forecasting Methods

- **persistence forecast**: using current state to predict future; not bad for Tucson in June
- trend forecast: assuming constant change rate
- **analogue method**: search for similar chart in history
- **statistical forecast**: routinely used; Model Output Statistics (MOS)--correct known model errors
- probability forecast: particularly for precipitation
- **climatological forecast**: using climatology to predict future; good for Tucson rainfall in June

Climatological forecasting

Probability for a `white Christmas' – 1 inch or more of snow

Forecast Verification

 Forecast verification is the process of measuring the skill of a forecast (model, human forecaster, MOS...)

Max Temp Verification

© 2010 Pearson Education, Inc.

Types of Forecasts

- very short range forecast or nowcast: 0-6 hr
- short range forecast: 6 hr 2.5 days
- Medium-range (or extended) forecast: 3-8.5 days
- long range forecast: 8.5 days 2 weeks
- Monthly and seasonal outlooks: above, near, or below normal conditions

The **Climate Prediction Center (CPC)** is responsible for forecasts valid more than 1 week into the future (numerical models and statistics) <u>http://www.cpc.ncep.noaa.gov/</u>

Seasonal forecasts are also made by the CPC that indicate above or below probabilities of warm/cold or wet/dry seasons

Weather Analysis

- Forecaster awareness is a major aspect of forecasting, and focuses on knowing the current atmospheric conditions using:
 - 1) Observations (radar, satellite,

radiosondes, surface station obs)

- 2) Weather maps
 - Surface
 - Aloft (850, 700, 500, 300mb)

Observations

- 4 main observation types help forecasters familiarize themselves with current weather conditions:
 - 1) Satellite images
 - 2) Radar images
 - 3) Data output from radiosondes
 - 4) Surface station plots

© 2010 Pearson Education, Inc.

Weather Maps

- Surface maps reveals locations:
 - 1) Fronts
 - 2) Cyclones (low-pressure centers)
 - 3) Anticyclones (high-pressure centers)
 - 4) Pressure gradients

© 2010 Pearson Education, Inc.

Weather Maps

- 850-mb maps reveals locations of:
 - 1) Fronts
 - 2) Warm and cold advection
 - 3) Winds just above the surface
 - 4) Guidance on precipitation type

147 +00 144

141

138 141 144

© 2010 Pearson Education, Inc.

Weather Maps

- 700-mb, 500-mb, and 300-mb maps reveal locations of:
 - 1) Jet stream position

© 2010 Pearson Education, Inc.