Chapter 5 - Air-Sea Interactions

Chapter overview

- The atmosphere and the ocean are an interdependent system.
- Earth has seasons because it is tilted on its axis.
- There are three major wind belts in each hemisphere.
- The Coriolis effect influences atmosphere and ocean behavior.
- Oceanic climate patterns are related to solar energy distribution.

Atmosphere and Oceans

- Solar energy heats Earth, generates winds.
- Winds drive ocean currents.
- Extreme weather events may be related to ocean.
- · Global warming affects oceans.

Earth's Seasons

- Earth's orbit is slightly elliptical.
- · Not the cause for seasons.

Earth's Seasons

- Earth's axis of rotation is tilted 23.5 degrees with respect to plane of the ecliptic.
 - Plane of the ecliptic – plane traced by Earth's orbit around the Sun

Earth's Seasons

- Vernal (spring) equinox
 - About March 21
- Autumnal equinox
 - About September 23
- Sun directly overhead at the equator on equinoxes

Earth's Seasons

Summer solstice

- About June 21
- Sun directly overhead at Tropic of Cancer 23.5 degrees north latitude

Winter solstice

- About December 21
- Sun directly overhead at Tropic of Capricorn 23.5 degrees south latitude

Earth's Seasons

- Sun's **declination** varies between 23.5 degrees north and 23.5 degrees south latitudes.
 - Declination angular distance of Sun from equatorial plane
- Region between these latitudes called the tropics.

Earth's Seasons

Arctic Circle

- North of 66.5 degrees north latitude
- No direct solar radiation during Northern Hemisphere winter
- Antarctic Circle
 - South of 66.5 degrees south latitude

Distribution of Solar Energy

- Concentrated solar radiation at low latitudes
 - High angle of incidence
- Solar radiation more diffuse at high latitudes
 - Low angle of incidence

Distribution of Solar Energy

- Atmosphere absorbs radiation
 - Thickness varies with latitude
- Albedo 0–100%
 - Reflectivity of a surface
 - Average for Earth is 30%
- Angle of sun on sea surface
 - Reflection of incoming sunlight

Sun Elevation and Solar Absorption

TABLE 6.1 REFLECTION AND ABSORPTION OF SOLAR ENERGY RELATIVE TO THE ANGLE OF INCIDENCE ON A FLAT SEA								
Elevation of the Sun above the horizon	90°	60°	30°	15°	5°			
Reflected radiation (%)	2	3	6	20	40			
Absorbed radiation (%)	98	97	94	80	60			

Oceanic Heat Flow

Physical Properties of the Atmosphere

Temperature Variation in the Atmosphere

-76° -40° -4° 32° 68° Troposphere -• Upper atmosphere -30 lowest layer of Ozone layer atmosphere The high-altitude ozone layer protects Earth from harmful radiation. 40 - Where all weather Altitude (kilometers) 0 occurs 20 Altitude (miles) In the stratosphere, atmospheric - Temperature temperature generally increases decreases with with increasing altitude ... Stratosphere altitude while in the **troposphere**, where all weather is generated, Extends from surface atmospheric temperature 10 decreases with increasing altitude to about 12 km (7 Tropopause miles) up Troposphere Mountains -60 -40 -20 0 20 Temperature (°C)

Density Variations in the Atmosphere

 Convection cell – rising and sinking air Warm air rises - Less dense Warm air rising Cool air sinks Convection - More dense cell Moist air rises - Less dense Cold Hot Cool air falling window radiator Dry air sinks - More dense A circular-moving loop of air (a convection cell) is created in this room by warm air rising and cool air sinking.

Atmospheric Water Vapor Content

- · Partly dependent upon air temperature
 - Warm air typically moist
 - Cool air typically dry
- · Influences density of air

Atmospheric Pressure

- Thick column of air at sea level
 - High surface pressure equal to 1 atmosphere (14.7 pounds per square inch)
- Thin column of air means lower surface pressure
- · Cool, dense air sinks
 - Higher surface pressure
- · Warm, moist air rises
 - Lower surface pressure

Movement of the Atmosphere

- · Air always flows from high to low pressure.
- · Wind moving air

Movements in the Air

- Hypothetical nonspinning Earth
- Air rises at equator (low pressure)
- Air sinks at poles (high pressure)
- Air flows from high to low pressure
- One convection cell
 or circulation cell

The Coriolis Effect

- · Zero at equator
- · Greatest at poles
- Change in Earth's rotating velocity with latitude
 - 0 km/hour at poles
 - More than 1600 km/hour (1000 miles/hour) at equator
- Greatest effect on objects that move long distances across latitudes

Global Atmospheric Circulation

- · Circulation Cells one in each hemisphere
 - Hadley Cell: 0-30 degrees latitude
 - Ferrel Cell: 30-60 degrees latitude
 - Polar Cell: 60-90 degrees latitude
- Rising and descending air from cells generate high and low pressure zones

Global Atmospheric Circulation

- High pressure zones descending air
 - Subtropical highs 30 degrees latitude
 - Polar highs 90 degrees latitude
 - Clear skies
- · Low pressure zones rising air
 - Equatorial low equator
 - Subpolar lows 60 degrees latitude
 - Overcast skies with abundant precipitation

Three-Cell Model of Atmospheric Circulation

Idealized Three-Cell Model

- More complex in reality due to
 - Tilt of Earth's axis and seasons
 - Lower heat capacity of continental rock vs. seawater
 - Uneven distribution of land and ocean
 - Boundaries between wind belts
 - Doldrums or Intertropical Convergence Zone (ITCZ) – at equator
 - Horse latitudes 30 degrees
 - Polar fronts 60 degrees latitude

Global Wind Belts

- Portion of global circulation cells closest to surface generate winds
- Trade winds From subtropical highs to equator
 - Northeast trade winds in Northern Hemisphere
 - Southeast trade winds in Southern Hemisphere
- Prevailing westerly wind belts from 30–60 degrees latitude
- Polar easterly wind belts 60–90 degrees latitude

Characteristics of Wind Belts and Boundaries

Region (north or south latitude)	Name of wind belt or boundary	Atmospheric pressure	Characteristics	
Equatorial (0–5 degrees)	Doldrums (boundary)	Low	Light, variable winds. Abundant cloudiness and much precipitation. Breeding ground for hurricanes.	
5–30 degrees	Trade winds (wind belt)		Strong, steady winds, generally from the east.	
30 degrees	Horse latitudes (boundary)	High	Light, variable winds. Dry, clear, fair weather with little precipitation. Major deserts of the world.	
30–60 degrees Prevailing westerlies (wind belt		-	Winds generally from the west. Brings storms that influence weather across the United States.	
60 degrees	Polar front (boundary)	Low	Variable winds. Stormy, cloudy weather year round.	
60–90 degrees	Polar easterlies (wind belt)	_	Cold, dry winds generally from the east.	
Poles (90 degrees)	Polar high pressure (boundary)	High	Variable winds. Clear, dry, fair conditions, cold temperatures, and minimal precipitation. Cold deserts	

Weather vs. Climate

• Weather – conditions of atmosphere at particular time and place

Example: Today's temperature

- Climate long-term average of weather Example: Average temperature for 10/27 for the last 20yrs.
- · Ocean influences Earth's weather and climate patterns.

Weather or Climate?

- "Cumulus clouds are presently covering Manhattan skies"
- "Rainiest month in Seattle is January"
- "Average January temperature in Chicago is -3C"
- "Snow is falling at a rate of 6cm per hour"

What generates winds?

Atmospheric pressure differences moves air masses, this movement is what we know as wind.

High Pressure Systems are associated with divergence of winds.

Winds

Cyclonic flow

- Counterclockwise around a low in Northern Hemisphere
- Clockwise around a low in Southern Hemisphere

· Anticyclonic flow

- Clockwise around a low in Northern Hemisphere
- Counterclockwise around a low in Southern Hemisphere

Winds

• Weather maps show pattern of wind flow relative to high and low pressure regions.

Sea and Land Breezes

- Differential solar heating is due to different heat capacities of land and water.
- Sea breeze
 From ocean to land
- Land breeze
 - From land to ocean

Storms and Air Masses

- Storms disturbances with strong winds and precipitation
- Air masses large volumes of air with distinct properties
 - Land air masses dry
 - Marine air masses moist

Fronts

- Fronts boundaries between air masses
- Warm front
 - Contact where warm air mass moves to colder area
- Cold front
 - Contact where cold air mass moves to warmer area

Fronts

- · Storms typically develop at fronts.
- Jet Stream narrow, fast-moving, easterly air flow
 - At middle latitudes just below top of troposphere
 - May cause unusual weather by steering air masses

Tropical Cyclones (Hurricanes)

- · Large rotating masses of low pressure
- · Strong winds, torrential rain
- · Classified by maximum sustained wind speed
- Typhoons alternate name in North Pacific
- Cyclones name in Indian Ocean

Hurricane Origins

- Low pressure cell
- Winds feed water vapor
 Latent heat of condensation
- · Air rises, low pressure deepens
- Storm develops

Hurricane Development

- Tropical Depression
 - Winds less than 61 km/hour (38 miles/hour)
- Tropical Storm
 - Winds 61-120 km/hour (38-74 miles/hour)
- Hurricane or tropical cyclone
 - Winds above 120 km/hour (74 miles/hour)

Saffir-Simpson Scale of Hurricane Intensity

Category	Wind speed		Typical storm surge (sea level height above normal)		
	km/hr	mi/hr	meters	feet	Damage
1	120-153	74-95	1.2-1.5	4-5	Minimal: Minor damage to buildings
2	154–177	96-110	1.8-2.4	68	Moderate: Some roofing material, door, and window damage; some trees blown down
3	178-209	111-130	2.7-3.7	9–12	Extensive: Some structural damage and wall failures; foliage blown off trees and large trees blown down
4	210-249	131-155	4.0-5.5	13–18	Extreme: More extensive structural damage and wall failures; most shrubs, trees, and signs blown down
5	>250	>155	>5.8	>19	Catastrophic: Complete roof failures and entire building failures common; all shrubs, trees, and signs blown down; flooding of lower floors of coastal structures

Hurricanes

- About 100 worldwide per year
- Require
 - Ocean water warmer than 25°C (77°F)
 - Warm, moist air
 - The Coriolis effect
- Hurricane season is June 1–November 30

Hurricane Anatomy

- Diameter typically less than 200 km (124 miles)
 - Larger hurricanes can be 800 km (500 miles)
- Eye of the hurricane
 - Low pressure center
- Spiral rain bands with intense rainfall and thunderstorms

(c) Enlarged cut-away view of a hurricane showing its components, internal structure, and winds.

Hurricane Movement

(a) Satellite photo of Hurricane Andrea off the U.S. East Coast in 2007.

Historical Storm Tracks

Hurricane Destruction

- High winds
- · Intense rainfall
- Storm surge increase in shoreline sea level

Storm Destruction

Historically destructive storms

- Galveston, TX, 1900
- Andrew, 1992
- Mitch, 1998
- Katrina, 2005
- Ike, 2008
- Irene, 2011
- Sandy, 2012

Hurricane Sandy, 2012

- Category 1
- Largest Atlantic hurricane on record
- Storm surge coincided with peak high tides in heavily populated New York and New Jersey.
- Severe coastal erosion
- Extreme flooding
- 233 deaths, more than \$68 billion in damages.
 - Second costliest hurricane after Katrina

Damage in New Jerseyfrom Hurricane Sandy, 2012

2005 Atlantic Hurricane Season

- Most active season on record
 - 27 named storms
 - 15 became hurricanes
- Season extended into January 2006
- Five category 4 or 5 storms
 - Dennis, Emily, Katrina, Rita, Wilma

Hurricane Katrina

- Costliest and deadliest
 U.S. hurricane
- Category 3 at landfall in Louisiana
 - Largest hurricane of its strength to make landfall in U.S. history
- Flooded New Orleans

I Satellite view of Hurricane Katrina coming ashore along the Gulf Coast on August 29, 2005, showing the hurricane's ounterolocivewise direction of spin and prominent central eye, Hurricane Katrina, which had a diameter of about 670 kilometers (415 miles), was the largest hurricane of its strength to make landfall in the United States in recorded history.

b) Hurricane Katrina breached levees and flooded New Orleans, Louisiana, causing damages of more than \$75 billion and claiming at least \$800 lives

Hurricanes Rita and Wilma

- Rita September 2005
 - Most intense Gulf of Mexico tropical cyclone
 - Extensive damage in Texas and Louisiana
- Wilma October 2005
 - Most intense hurricane ever in Atlantic basin
 - Multiple landfalls
 - Affected 11 countries

2017 Hurricane Season: Major Hurricanes

- Harvey, Cat4
- Irma, Cat5
- Maria, Cat5

Harvey - Texas

- Extreme floodings due to rainfall primarily.
- First major hurricane to make landfall in US since Wilma (2005).
- Over \$70 billion in damages.
- · 67 direct deaths, 27 indirect deaths

Irma

- Strongest since Wilma in terms of winds.
- 185 mph maximum sustained winds.
- First hurricane, on record, to strike the Leeward Islands.
- Complete destruction of Barbuda, St.Barthelemy, St. Martin, Anguila and the VI.
- · Extreme storm surge inundations in FI.
- Over \$63 billions in damages.
- 134 deaths

Maria

- Strongest and more devastating hurricane in Puerto Rico in almost 100 years.
- First major hurricane to hit PR since 1998.
- 175mph maximum sustained winds, 908mb minimum pressure.
- Devastation in Dominica and PR.
- Spawned an island wide humanitarian crisis in PR.
- Damages estimated in \$90 billion in PR alone.
- · 68 deaths, 28 indirect, probably higher

<section-header>

31

Causes for Intensification

- Very little wind shear.
- Compactness/organization of the storm.
- Small eye ("pin-hole"), allows for more rapid rotation.
- Appropriate ocean temperatures.
- Moist in the atmosphere.

Historic Hurricane Destructions

- · Most hurricanes in North Pacific
- Bangladesh regularly experiences hurricanes
 1970 massive destruction from storm
- Southeast Asia affected often
- Hawaii
 - Dot in 1959
 - Iwa in 1982

Future Hurricane Threats

- Loss of life decreasing due to better forecasts and evacuation
- More property loss because of increased coastal habitation

Ocean's Climate Patterns

- Open ocean's climate regions are parallel to latitude lines.
- These regions may be modified by surface ocean currents.

Ocean's Climate Patterns

Ocean's Climate Zones

Equatorial

- Rising air
- Weak winds
- Doldrums

Tropical

- North and south of equatorial zone
- Extend to Tropics of Cancer and Capricorn
- Strong winds, little precipitation, rough seas

Subtropical

- High pressure, descending air
- Weak winds, sluggish currents

Ocean's Climate Zones

Temperate

- Strong westerly winds
- Severe storms common

Subpolar

- Extensive precipitation
- Summer sea ice

Polar

- High pressure
- Sea ice most of the year