Chapter 5 – Water & Seawater

Chapter 5 – Water & Seawater

Chapter Overview

- Water has many unique thermal and dissolving properties.
- Seawater is mostly water molecules but has dissolved substances.
- Ocean water salinity, temperature, and density vary with depth.
- Presence of water on Earth makes life possible.
- Organisms are mostly water.
- Chemical structure of water gives it its unusual properties.

Atomic Structure - Molecule

- Atoms building blocks of all matter
- Subatomic particles
 - Protons
 - Neutrons
 - Electrons
- Number of protons distinguishes chemical elements

- Molecule
 - Two or more atoms held together by shared electrons
 - Smallest form of a substance

Water molecule

- Strong <u>covalent</u>
 <u>bonds</u> between two hydrogen (H) and one oxygen (O) atoms
 Both H atoms on same
 - side of O atom – Bent molecule shape
 - gives water its unique properties
 - Dipolar

(H = hydrogen, O = oxygen)

Water molecules - Hydrogen Bonding

- Polarity means small negative charge at O end
- Small positive charge at H end
- Attraction between positive and negative ends of water molecules to each other or other ions

Hydrogen Bonding

- Hydrogen bonds are weaker than covalent bonds but still strong enough to contribute to
 - Cohesion molecules sticking together
 - High water surface tension
 - High solubility of chemical compounds in water
 - Unusual thermal properties of water
 - Unusual density of water

Water's Thermal Properties

Three States of Matter

- Water is solid, liquid, and gas at Earth's surface.
- Water influences Earth's heat budget.

Heat and Temperature

- Heat transfer of both kinetic and potential energy from one object to another due to temperature differences
- **Temperature** average kinetic energy of molecules in a substance
- Calorie is the amount of heat needed to raise the temperature of 1 gram of water by 1°C.

Temperature - Freezing and Boiling Points

- Freezing point = melting point: 0°C (32°F)
- Boiling point = condensation point: 100°C (212°F)
- Freezing and boiling points of water unusually high

Water's Heat Capacity and Specific Heat

- Heat Capacity amount of heat required to raise the temperature of 1 gram of any substance by 1°C
- Water has a high heat capacity - can take in or lose much heat without changing temperature
- Specific Heat heat capacity per unit mass

Latent ('hidden') Heat

- Water has high latent heats
 - Heat absorbed or released during change of state
- Water's latent heat related to its high heat capacity

Latent Heat

Latent Heat of Melting

 Energy needed to break intermolecular bonds that hold water molecules rigidly in place in ice crystals

Latent Heat of Vaporization

✓ Amount of heat that must be added to a substance <u>at its</u> <u>boiling point</u> to break the intermolecular bonds and change state from liquid to vapor

✓ 540 calories/gram

- ✓ All hydrogen bonds must be broken
- Latent Heat of Evaporation
 - Evaporation = conversion of liquid to gas <u>below the boiling</u> <u>point</u>
 - ✓ 585 calories/gram
 - ✓ Lower temperature of surface water not at boiling point means more hydrogen bonds to break

Latent Heat

Latent Heat of Condensation

- Cooled water vapor turns to liquid and releases heat to the environment
- Identical to latent heat of vaporization
- Latent Heat of Freezing
 - Heat released when water freezes
 - Identical to latent heat of melting

Global Thermostatic Effects

Be sure to keep in mind the following:

- Water's properties moderate temperature on Earth's surface
 - ✓ Equatorial oceans do not boil
 - ✓ Polar oceans do not freeze solid
- Heat energy exchanged in evaporationcondensation cycle
 - ✓ Makes life possible on Earth

Water Density

Density = mass/unit volume

- Density of water increases as temperature decreases.
 - Thermal contraction = shrinkage of most substances caused by cold temperatures

Water Density

- From 4°C to 0°C the density of water decreases as temperature decreases.
 - Unique property of water
- Ice is less dense than liquid water.
 - Changes in molecular packing
 - Water expands as it freezes.

Water Density

- Increasing pressure or adding dissolved substances decreases the maximum density temperature.
- Dissolved solids also reduce the freezing point of water.
 - Most seawater never freezes.

Salinity

- Total amount of dissolved solids in water including dissolved gases
 - Excludes dissolved organics
- Ratio of mass of dissolved substances to mass of water sample

Seawater

. Major constituents	(in parts per thousand by we	ight, ‰)				
Constituent		Concentration (%»)		Ratio of constituent/total salts (%)		
Chloride (CI ⁻)		19.2		55.04		
Sodium (Na ⁺)		10.6		30.61		
Sulfate (SO42-)		2.7		7.68		
Magnesium (Mg ²⁺)		1.3		3.69		
Calcium (Ca ²⁺)		0.40		1.16		
Potassium (K*)		0.38		1.10		
Total		34.58%		99.28%		
. Minor constituents	(in parts per million by weig	ht. pom ^a)				
Gases		Nutrients		Others		
onstituent	Concentration (ppm)	Constituent	Concentration (ppm)	Constituent	Concentration (ppm)	
arbon dioxide CO ₂)	90	Silicon (Si)	3.0	Bromide (Br)	65.0	
litrogen (N ₂)	14	Nitrogen (N)	0.5	Carbon (C)	28.0	
Oxygen (O ₂)	6	Phosphorus (P)	0.07	Strontium (Sr)	8.0	
		Iron (Fe)	0.002	Boron (B)	4.6	
. Trace constituents	(in parts per billion by weigh	t, ppb ^b)				
Constituent	Concentration (ppb)	Constituent	Concentration (ppb)	Constituent	Concentration (ppb)	
ithium (Li)	185	Zinc (Zn)	10	Lead (Pb)	0.03	
ubidium (Rb)	120	Aluminum (Al)	2	Mercury (Hg)	0.03	
ndine (I)	60	Manganese (Mn)	2	Gold (Au)	0.005	

Determining Salinity

Salinometer

- Measures water's electrical conductivity
- More dissolved substances increase conductivity

Determining Salinity

Principle of Constant Proportions

- Chemical analysis via titration
- Major dissolved constituents in same proportion regardless of total salinity
- Measure amount of halogens (CI, Br, I, F) (chlorinity)
- Salinity = 1.80655 * Chlorinity (ppt)

Pure Water vs. Seawater

SMARTTABLE 5.2 COMPARISON OF SELECTED PROPERTIES OF PURE WATER AND SEAWATER								
Property		Pure water	35‰ seawater					
(ht sion)	Small quantities of water	Clear (high transparency)	Same as for pure water					
Color (lig transmis	Large quantities of water	Blue-green because water molecules scatter blue and green wavelengths best	Same as for pure water					
Odor		Odorless	Distinctly marine					
Taste		Tasteless	Distinctly salty					
рН		7.0 (neutral)	Surface waters, range = 8.0–8.3; average = 8.1 (slightly alkaline)					
Freezing point		0°C (32°F)	-1.9°C (28.6°F)					
Boiling point		100°C (212°F)	100.6°C (213.1°F)					
Density at 4°C (39°F)		1.000 g/cm ³	1.028 g/cm ³					

Salinity Variations

- Open-ocean salinity is 33–38 %...
- In coastal areas salinity varies more widely.

Hypersaline

- High evaporation conditions
- Great Salt Lake salinity = $280 \circ /_{oo}$.
- Dead Sea salinity = $330 \circ /_{oo}$.
- Salinity may vary with seasons (dry/rain).

Processes Affecting Salinity

- Decreasing salinity adding fresh water to ocean
 - Runoff, melting icebergs, melting sea ice
 - Precipitation
- Increasing salinity removing water from ocean
 - Sea ice formation
 - Evaporation

Processes Affecting Salinity

	SWARTTABLE J.J PROCESSES THAT AFFECT SEAWATER SALINITY									
Process	How accomplished	Adds or removes	Effect on salt in seawater	Effect on H ₂ 0 in seawater	Salinity increase or decrease?	Source of freshwater from the sea?				
Precipitation	Rain, sleet, hail, or snow falls directly on the ocean	Adds very fresh water	None	More H ₂ O	Decrease	N∕A				
Runoff	Streams carry water to the ocean	Adds mostly fresh water	Negligible addition of salt	More H ₂ O	Decrease	N∕A				
lcebergs melting	Glacial ice calves into the ocean and melts	Adds very fresh water	None	More H ₂ O	Decrease	Yes, icebergs from the Antarctic hav been towed to South America				
Sea ice melting	Sea ice melts in the ocean	Adds mostly fresh water and some salt	Adds a small amount of salt	More H ₂ O	Decrease	Yes, sea ice can be melted and is better than drinking seawater				
Sea ice forming	Seawater freezes in cold ocean areas	Removes mostly freshwater	30% of salts in seawater are retained in ice	Less H ₂ O	Increase	Yes, through multiple freezings, called <i>freeze separation</i>				
Evaporation	Seawater evaporates in hot climates	Removes very pure water	None (essentially all salts are left behind)	Less H ₂ O	Increase	Yes, through evaporation of seawater and condensation of water vapor, called <i>distillation</i>				

Earth's Hydrologic Cycle

- · Processes that affect seawater salinity
- Recycles water among ocean, atmosphere, and continents
- Water in continual motion between water reservoirs

Earth's Hydrologic Cycle

Earth's Water

- 97.2% in the world ocean
- 2.15% frozen in glaciers and ice caps
- 0.62% in groundwater and soil moisture
- 0.02% in streams and lakes
- 0.001% as water vapor in the atmosphere

Residence Time

- Average length of time a substance remains dissolved in seawater
- Ions with long residence time are in high concentration in seawater.
- Ions with short residence time are in low concentration in seawater.
- Steady state condition average amounts of various elements remains constant

Cycling of Dissolved Seawater Components

Acidity and Alkalinity

- Acid releases a hydrogen ion (H+) when dissolved in water.
- Alkaline (or base) releases a hydroxide ion (OH-) in water.

Ocean pH

Carbonate Buffering System

- **Buffering** keeps the ocean from becoming too acidic or too basic.
- Precipitation or dissolution of calcium carbonate, CaCO₃, buffers ocean pH.
- Oceans can absorb CO₂ from the atmosphere without much change in pH.

Surface Salinity Variation

- High latitudes
 - Low salinity
 - Abundant sea ice melting, precipitation, and runoff
- Low latitudes near equator
 - Low salinity
 - High precipitation and runoff
- Mid latitudes
 - High salinity
 - Warm, dry, descending air increases evaporation

Surface Salinity Variation by Latitude

Salinity Variation with Depth

- Low latitudes salinity decreases with depth
- High latitudes salinity increases with depth
- Deep ocean salinity fairly consistent globally
- Halocline separates ocean layers of different salinity

Seawater Density

- Freshwater density = 1.000 g/cm³
- Ocean surface water =1.022 to 1.030 g/cm³
- Ocean layered according to density
- Density increases with decreasing temperature

>Greatest influence on density

- · Density increases with increasing salinity
- Density increases with increasing pressure
 > Does not affect surface waters

Temperature and Density Variations with Depth

Layered Ocean

Three distinct water masses based on density:

- Mixed surface layer above thermocline
- Upper water thermocline and pycnocline
- Deep water below thermocline to ocean floor

High latitude oceans - thermocline and pycnocline rarely develop

- Isothermal no temperature variation in water column
- > Isopycnal no density variation in water column