# Chapter 1 Introduction to Planet "Earth"

## Overview

- The world ocean is the most prominent feature on Earth.
- Oceans cover 70.8% of Earth's surface.
- The origin and development of life on Earth are connected to the ocean.
- · The oceans have a long history on Earth.

# **Earth's Oceans**

- Oceans dominate Earth's surface
- Earth's largest habitat
- 97.2% of Earth's surface water



# **Earth's Oceans**

- Earth has one ocean.
- Divided into four principal oceans and one other.
  - Pacific Ocean
  - Atlantic Ocean
  - Indian Ocean
  - Arctic Ocean
  - Southern, or Antarctic, Ocean





# **Earth's Oceans**

#### Pacific Ocean

- World's largest ocean
  - · Accounts for more than half of Earth's ocean space
- World's deepest ocean
- Earth's largest geographic feature
- Named in 1520 by Ferdinand Magellan

### **Earth's Oceans**

#### Atlantic Ocean

- Half the size of the Pacific Ocean
- Shallower than the Pacific Ocean
- Separates the Old World from the New World

#### Indian Ocean

- Smaller than the Atlantic Ocean
- Similar depth as the Atlantic Ocean
- Primarily in the Southern Hemisphere

### Earth's Oceans

#### Arctic Ocean

- Seven percent the size of the Pacific Ocean
- Shallowest world ocean
- Permanent layer of sea ice a few meters thick

#### Southern Ocean or Antarctic Ocean

- Circumnavigates Antarctica
- Is really the parts of the Pacific, Atlantic, and Indian Oceans that lie south of 50°S latitude

### **The Seven Seas**

- Smaller and shallower than oceans
- · Salt water
- · Usually enclosed by land
  - Sargasso Sea defined by surrounding ocean currents
- · Directly connected to the ocean

### **The Seven Seas**

- Before the 15th century, Europeans considered the seven seas to be the following:
  - Red Sea
  - Mediterranean Sea
  - Persian Gulf
  - Black Sea
  - Adriatic Sea
  - Caspian Sea
  - Indian Ocean

### **Ancient Seven Seas Map**



# **Comparing Oceans to Continents**

- Average ocean depth is 3682 meters (12, 080 feet)
- Average continental elevation is 840 meters (2756 feet)
- Deepest ocean trench is the Mariana Trench at 11,022 meters (36,161 feet)
- Highest continental mountain is Mt. Everest at 8850 meters (29,035 feet)

# **Early Exploration of the Oceans**

From here to slide #30 (Oceanography Continues) Section 1.2 of your textbook is summarized but not discussed in class – Please read it and Review questions 1 – 3 in the Concept Check of page 15

- Early explorers used boats to seek new fishing grounds for food.
- The ocean facilitated trade and interaction between cultures.

# Pacific Navigators



# **Pacific People**

- No written records exist of Pacific human history before the 16th century.
- Archeological evidence suggests island occupation by people from New Guinea as early as 4000–5000 B.C.

## **Pacific People**

• **Thor Heyerdahl** sailed on a balsa raft - the **Kon** *Tiki* - to demonstrate migration of South Americans to Pacific Ocean islands.



## **European Navigators**

- **Phoenecians** first from Western Hemisphere to develop navigation arts
  - Navigated circa 2000 B.C.
  - Explored Mediterranean Sea, Red Sea, and Indian Ocean
  - First circumnavigation of Africa
  - Reached the British Isles

### **European Navigators**

- Greek Pytheas
  - Sailed northward using a simple method to determine latitude in 325 B.C.
  - Navigated using the North Star
- **Eratosthenes** determined Earth's circumference fairly accurately.

#### Europeans

- Herodotus produced inaccurate world map around 450 B.C.
- Claudius Ptolemy produced fairly accurate world map around 150 A.D.
  - Erroneously updated Eratosthenes' original circumference estimation, later causing Christopher Columbus to believe he had reached Asia



# The Middle Ages

- Arabs dominant navigators in the Mediterranean Sea
- Traded extensively with East Africa, India, and Southeast Asia
- Learned to use Indian Ocean monsoon winds for travel

# The Middle Ages

- Vikings explored North Atlantic Ocean
  - Settled Iceland and Greenland in 9th and 10th centuries A.D.
  - Leif Eriksson designated part of eastern Canada Vinland (now Newfoundland) in 995 A.D.
  - Greenland, Vinland settlements abandoned by 1450 A.D. due to climatic cooling

### **The Middle Ages**

- Other Viking explorers
  - Erik "the Red" Thorvaldson discovered Greenland
  - Bjarni Herjólfsson first to find Newfoundland



# The Age of Discovery in Europe 1492–1522

- Search for new Eastern trade routes by sea
  - Prince Henry the Navigator of Portugal sought trade routes around Africa.
  - Europeans explore North and South America.
    - Christopher Columbus was financed by the Spanish to find new trade routes to Asia.

# The Age of Discovery in Europe 1492–1522

- Spaniard Ferdinand Magellan circumnavigated the globe.
  - Was killed on a Pacific Island in 1521
- Juan Sebastian del Caño completed the circumnavigation in 1522.
- Voyages paved the way for the Spanish to take gold from the Incas and Mayas.
- Spain's maritime dominance ended when England defeated the **Spanish Armada** in 1588.



### Voyages of Columbus and Magellan

### The Age of Discovery in Europe 1492–1522

- Italian Giovanni Caboto, also known as John Cabot - landed on northeastern coast of North America.
- Vasco Nuñez de Balboa attempted land crossing at Isthmus of Panama.

# Voyaging for Science

- The English wanted to retain maritime superiority.
- Captain James Cook (1728–1779) undertook three scientific voyages.
  - Ships HMS Endeavour, Resolution, Adventure
  - Mapped many islands in Pacific
  - Systematically measured ocean characteristics
  - Marine chronograph (longitude)



# **Oceanography Continues**

- · More high-technology tools available today
  - Sonar
  - Robotics
  - Computers
  - Satellites
- NOAA National Oceanographic and Atmospheric Administration





# Nature of Scientific Inquiry

- Natural phenomena governed by physical processes
- Physical processes similar today as in the past
- Scientists discover these processes and make predictions.
- Called the scientific method



# **Theories and Truth**

- · Science never reaches absolute truth.
- Truth is *probable* and based on available observations.
- · New observations yield scientific progress.
- · In reality, scientists have no formal method.
- **Theory** well-substantiated explanation of some aspect of the natural world.

# Formation of Earth and the Solar System

- Nebular hypothesis all bodies in the solar system formed from nebula
  - Nebula = cloud of gases and space dust
    - Mainly hydrogen and helium



# **Nebular Hypothesis**

- Gravity concentrates material at center of cloud (Sun).
- Protoplanets form from smaller concentrations of matter (eddies).



### Protoearth

- · Larger than Earth today
- Homogeneous composition
- · Bombarded by meteorites
  - Moon formed from collision with large asteroid.



### Protoearth

- Radioactive heat
  - Spontaneous disintegration of atoms
  - Fusion reactions
- Heat from contraction (protoplanet shrinks due to gravity)
- · Protoearth partially melts
- Density stratification (layered Earth)

## Solar System Today



# **Density Stratification**

- High density = heavy for its size
- Early Earth experienced gravitational separation.
  - High-density materials (iron and nickel) settled in core.
  - Less dense materials formed concentric spheres around core.

## **Earth's Internal Structure**

- · Layers defined by
  - Chemical composition
  - Physical properties

# Layers by Chemical Composition

- Crust
  - Low-density, mainly silicate minerals
- Mantle
  - Mainly iron (Fe) and magnesium (Mg) silicate minerals
- Core
  - High-density, mainly iron (Fe) and nickel (Ni)

# **Layers by Physical Properties**

- Lithosphere
- Asthenosphere
- Mesosphere
- Outer core
- Inner core



# Lithosphere

- Cool, rigid shell
- · Includes crust and upper mantle
- About 100 km (60 miles) thick

# Asthenosphere

- · Relatively hot, plastic
- · Flows with high viscosity
  - Important for movement of lithospheric plates
- Base of lithosphere to about 700 km (430 miles) deep

# **Internal Structure of Earth**



# **Continental vs. Oceanic Crust**

| SmartTable $1.1$ comparing oceanic and continental crust |                                    |                                      |
|----------------------------------------------------------|------------------------------------|--------------------------------------|
|                                                          | Oceanic crust                      | Continental crust                    |
| Main rock type                                           | Basalt (dark-colored igneous rock) | Granite (light-colored igneous rock) |
| Density (grams per cubic<br>centimeter)                  | 3.0                                | 2.7                                  |
| werage thickness                                         | 8 kilometers (5 miles)             | 35 kilometers (22 miles)             |

# **Isostatic Adjustment**

- Vertical movement of Earth's crust
- · Buoyancy of lithosphere on asthenosphere
  - Less dense continental crust floats higher than denser oceanic crust.
- **Isostatic rebound** rising of crust formerly weighed down by glacier ice

# **Isostatic Adjustment**



# **Origin of Earth's Atmosphere**

- Outgassing occurred during density stratification
  - Water vapor
  - Carbon dioxide
  - Hydrogen
  - Other gases
- · Earth's early atmosphere different from today

# **Origin of Earth's Oceans**

- Outgassed water vapor fell as rain.
- The first permanent oceans formed 4 billion years ago.
- Salinity developed from dissolved rock elements.
  - Early acidic rain dissolved more crustal minerals than today.

# **Development of Earth's Oceans**



## Life's Possible Ocean Origins

- Earth's earliest known life forms are 3.5-billion-year-old bacteria fossilized in ocean rocks.
- These are the building blocks for life on early Earth.
- There is no direct evidence of early Earth's environment.

## Oxygen

- Humans require O<sub>2</sub>.
- Ozone (O<sub>3</sub>) protects from ultraviolet radiation.
- · Early Earth had little free oxygen.
- The lack of ozone may have helped originate life.

## **Stanley Miller's Experiment**

• Organic molecules formed by ultraviolet light, electrical spark (lightning), and a mixture of water, carbon dioxide, hydrogen, methane, and ammonia

# **Evolution and Natural Selection**

- · Organisms adapt and change through time.
- · Advantageous traits are naturally selected.
- Traits are passed to the next generation.
- · Organisms adapt to environments.
- Organisms can modify environments.

## **Plants and Animals Evolve**

#### Heterotrophs

- Very earliest life
- Require external food supply

#### Autotrophs

- Evolved later
- Manufacture own food supply

### **First Autotrophs**

- Probably similar to modern anaerobic bacteria
  Survive without oxygen
- Chemosynthesis from chemicals at deep hydrothermal vents
- Supports idea of life's origins on deep ocean floor in absence of light

# Photosynthesis and Respiration

- · Complex autotrophs developed chlorophyll.
- This allowed the use of the Sun for photosynthesis.
- Cellular respiration

# Photosynthesis and Respiration



## **Great Oxidation Event**

- 2.45 billion years ago
- Increased oxygen and ozone eliminated the anaerobe food supply.
- · Light and oxygen kill anaerobes.
- · Cyanobacteria adapted and thrived.

## **Plants and Earth's Environment**



# **Changes to Earth's Atmosphere**

- Photosynthetic organisms are responsible for life as we know it today.
- Reduce CO<sub>2</sub>, increase O<sub>2</sub> to 21%
- High oxygen = biodiversity increase
- Low oxygen associated with extinction events



# **Geologic Time Scale**

