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Recent studies have suggested that the leading modes of North Atlantic subsurface temperature (Tsub)

and sea surface height (SSH) anomalies are induced by Atlantic meridional overturning circulation

(AMOC) variations and can be used as fingerprints of AMOC variability. Based on these fingerprints of

the AMOC in the GFDL CM2.1 coupled climate model, a linear statistical predictive model of observed

fingerprints of AMOC variability is developed in this study. The statistical model predicts a weakening

of AMOC strength in a few years after its peak around 2005. Here, we show that in the GFDL coupled

climate model assimilated with observed subsurface temperature data, including recent Argo network

data (2003–2008), the leading mode of the North Atlantic Tsub anomalies is similar to that found with

the objectively analyzed Tsub data and highly correlated with the leading mode of altimetry SSH

anomalies for the period 1993–2008. A statistical auto-regressive (AR) model is fit to the time-series of

the leading mode of objectively analyzed detrended North Atlantic Tsub anomalies (1955–2003) and is

applied to assimilated Tsub and altimetry SSH anomalies to make predictions. A similar statistical AR

model, fit to the time-series of the leading mode of modeled Tsub anomalies from the 1000-year GFDL

CM2.1 control simulation, is applied to predict modeled Tsub, SSH, and AMOC anomalies. The two AR

models show comparable skills in predicting observed Tsub and modeled Tsub, SSH and AMOC variations.

Published by Elsevier Ltd.
1. Introduction

Recent studies have demonstrated tele-connections between
the North Atlantic and regional climate variability at multidecadal
timescales (e.g. Enfield et al., 2001; Knight et al., 2006; Zhang and
Delworth, 2006). Low-frequency variability in the North Atlantic
is often thought to be linked to Atlantic meridional overturning
circulation (AMOC) variability (Delworth and Mann, 2000; Knight
et al., 2005; Zhang, 2008). Griffies and Bryan (1997) have shown
that AMOC variations provide decadal predictability of simulated
North Atlantic variations. However, estimating AMOC variations
has been a major challenge. Instantaneous surveys across 251N
suggest a long-term slowdown of the AMOC (Bryden et al., 2005),
but these snapshots could be aliased by large seasonal variations
(Cunningham et al., 2007). To reconstruct the past AMOC varia-
tions when no direct observations are available, as well as to
evaluate future AMOC impacts, it would be very useful to develop
fingerprints for AMOC variations. The fingerprints need to be
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quantities that can be derived from both climate models and
observations. The identification of AMOC fingerprints would link
the ocean circulation with well-observed variables and contribute
to the interpretation of AMOC variations, allowing improved
assessments of the impacts of AMOC variations on global climate
change.

Previous studies have suggested that basin averaged North
Atlantic sea surface temperature (SST) anomalies could be taken
as a fingerprint of the multidecadal AMOC variations (Latif et al.,
2004; Knight et al., 2005). The anti-correlated relationship
between the tropical North Atlantic SST and subsurface tempera-
ture anomalies has also been shown as a signature of the AMOC
variability (Zhang, 2007). The North Atlantic SST anomalies might
be influenced by high frequency synoptic atmospheric variability
and changes in the radiative forcing (Mann and Emanuel, 2006),
thus their linkage to the AMOC variability is highly debated. A
recent study (Zhang, 2008) found that the leading mode of
altimeter SSH data is highly correlated with that of instrumental
subsurface ocean temperature data in the North Atlantic, and
both show opposite anomalies in the subpolar gyre and the Gulf
Stream path. A millennial control simulation using a coupled
ocean–atmosphere model (GFDL CM2.1) suggests that such a
dipole pattern is likely to be a distinctive fingerprint of AMOC
meridional overturning circulation (AMOC) variations using
i:10.1016/j.dsr2.2010.10.067
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variations. The fingerprint using modeled and observed
SSH/subsurface temperature data suggests that the recent slow-
down of the subpolar gyre is a part of a multidecadal variation
and linked to a strengthening of the AMOC. Note that the
relationship between the subpolar gyre and AMOC has not been
universally established in all models, and one ocean-only model-
ing study suggests a contrary in-phase relationship between the
two (Böning et al., 2006). Nonetheless, with recent advancement
in measurement of subsurface oceans by the Argo network and
satellite altimetry, it may be possible to monitor AMOC variations
using this fingerprint.

In this paper, we extend the analysis of Zhang (2008) to
include more recent measurements and highlight the link
between these new measurements and the capability of estimat-
ing AMOC variations. In particular, we take into account the
observed ocean subsurface temperature from the Argo network to
establish a new framework for monitoring and predicting AMOC
variations using the observed subsurface temperature fingerprint.
We apply the Argo data through the GFDL coupled data assimila-
tion (CDA) product (Zhang et al., 2007b). Furthermore, we make
predictions of AMOC variations using a statistical auto-regressive
(AR) model fit to the time-series of the observed fingerprints of
the AMOC. Schneider and Griffies (1999) apply discriminant
analysis to North Atlantic decadal variability of SSH and conclude
that the predictive power of AR models, as applied here, is
comparable to that of climate models. Applying the AR model to
the assimilated subsurface temperature and altimetry SSH
anomalies predicts a decline of the AMOC strength in the coming
decade. A similar statistical AR model, fit to the time-series of the
leading mode of modeled subsurface temperature anomalies from
a 1000-year control simulation of the fully coupled ocean–atmo-
sphere model (GFDL CM2.1, Delworth et al., 2006), is applied to
modeled subsurface temperature, SSH, and AMOC index anoma-
lies to make predictions. The two AR models show comparable
skills in predicting observed subsurface temperature and modeled
subsurface temperature, SSH and AMOC index variations. As a
caveat, the simulated AMOC varies considerably in different
climate models in terms of mean intensity, time-scale and
amplitude (Stouffer et al., 2006). Hence, the results from the
GFDL CM2.1 model are likely to be model dependent. However,
the AR2 model used to make future predictions in the real world
is independently computed from the observed time-series of the
AMOC fingerprints, and thus is not dependent on the GFDL CM2.1
model time series.
2. Description of data and models

In this study, the observed North Atlantic ocean subsurface
temperature data are derived from the publicly available yearly
averaged dataset of objectively analyzed ocean temperature
anomalies (Levitus et al., 2005) based on instrumental data for
the period of 1955–2003. Following (Zhang, 2008), we use
subsurface temperature anomalies at a depth of 400 m in our
analysis. A quadratic monotonic function is fit to the time-series
of the basin averaged subsurface temperature anomaly in the
North Atlantic to estimate the long-term secular global warming
trend over the past decades. The subsurface temperature anomaly
is detrended by removing this quadratic regression fit at each grid
point. This nonlinear detrended North Atlantic subsurface tem-
perature anomaly is used to define a fingerprint of AMOC
variations and to reconstruct the past AMOC variations using
the method shown in Zhang (2008).

To obtain continuously updated AMOC variations, we take
advantage of the recent measurement of ocean subsurface tem-
perature by the Argo network. The Argo network is a global array
Please cite this article as: Mahajan, S., et al., Predicting Atlantic
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of 3000 free-drifting profiling floats deployed since 2000, allow-
ing continuous monitoring of the temperature, salinity, and
velocity (estimated from the drift of the floats on resurfacing) of
the upper 2000 m of the ocean. We employ the recent Argo
subsurface temperature data through the GFDL coupled data
assimilation (CDA) product (Zhang et al., 2007b). The GFDL
coupled model assimilation system consists of an Ensemble Filter
applied to the GFDL fully coupled climate model (CM2.1). The
data assimilated into the coupled model includes the Argo net-
work data along with moored ocean buoy data from 2001
onwards (Chang et al., 2009). Prior to 2001, the assimilation
primarily incorporates data from the expendable bathymetry
thermographs (XBTs) (Zhang et al., 2007b). The inclusion of high
quality Argo network observations has considerably increased the
skill of the assimilation (Chang et al., 2009). Ongoing assimilation
of Argo data will lead to an increased record length, giving the
potential to monitor the current and future ocean state.

The altimeter SSH data, also used to define a fingerprint of
AMOC variations, are obtained from the DUACS (Data Unification
and Altimetry Combination System) product (Le Traon et al.,
1998), distributed by AVISO (Archiving, Validation and Interpre-
tation of Satellite Oceanographic data). The dataset merges
the TOPEX/Poseidon (T/P), Jason-1, ERS-1/2, and Envisat satellite
measurements, and is available from 1993 onwards. To compare
with the altimetry SSH data, we analyze the subsurface tempera-
ture data from the CDA product over the period of 1993–2008.

In addition, to establish the robustness of the use of the linear
statistical model applied to observed fingerprints of AMOC, we
also build a linear statistical model using the 1000-year control
simulation of the GFDL CM2.1, which exhibits decadal AMOC
variability (Delworth et al., 2006).
3. AMOC fingerprints

The spatial pattern of the leading empirical orthogonal func-
tion (EOF1) of detrended North Atlantic subsurface temperature
anomalies at a depth of 400 m (Tsub) displays a dipole pattern
(Fig. 1A), i.e. warming in the subpolar gyre and cooling near the
Gulf Stream path; the principal component of the leading mode
(PC1) of the Tsub is strongly correlated with that of the altimetry
SSH for the period 1993–2003 (r¼0.95, Fig. 1D), as discussed
in Zhang (2008). Fig. 1B shows the spatial pattern of the leading
mode of CDA subsurface temperature at a depth of 400 m for the
period 1993–2008. The PC1 is highly correlated with that of the
objectively analyzed Tsub for the period 1993–2003 (r¼0.97,
Fig. 1D), partly resulting from the similar trends present in the
two time-series during the period. However, the spatial pattern
shows differences in and around the Gulf Stream region near the
North American eastern coast. These differences can be attributed
to the inherent model biases of the coupled climate model (GFDL
CM2.1) and the short length of data-record for assimilation, which
limits the convergence of the assimilation product.

The spatial pattern of the leading mode of altimetry SSH
(Fig. 1C) shows a similar dipole pattern, i.e. increasing SSH in
the subpolar gyre and reduced SSH near the Gulf Stream path.
A high correlation is also seen between PC1s of CDA Tsub and SSH
(r¼ 0:91, Fig. 1D), establishing the robustness of the coherence
between Tsub and SSH discussed in Zhang (2008), where it was
proposed that these features are fingerprints of the AMOC that
could be used to estimate decadal AMOC variations. In the GFDL
CM2.1 control simulation, an intensification of the AMOC is
associated with a weakening of the subpolar gyre and a south-
ward shift of the Gulf Stream and a strengthening of the northern
recirculation gyre (NRG). The weaker subpolar gyre is associated
with increased subsurface temperature and increased SSH over the
meridional overturning circulation (AMOC) variations using
i:10.1016/j.dsr2.2010.10.067
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Fig. 1. EOF1 of (A) objectively analyzed Tsub anomalies at 400 m for 1955–2003, (B) CDA Tsub anomalies at 400 m for 1993–2008, (C) altimetry SSH anomalies for

1993–2008, and the corresponding (D) standardized PC1s. The cross-correlations between PC1s are listed in (D).
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subpolar North Atlantic, while decreased subsurface temperature
and lower SSH are seen in the Gulf Stream region associated with
the southward shift of the Gulf Stream. It should be noted, however,
that while the above-mentioned fingerprints of the AMOC are a
feature of the GFDL CM2.1, they may not be universal. It remains to
be established if such fingerprints of the AMOC exist in other
climate models.
Please cite this article as: Mahajan, S., et al., Predicting Atlantic
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Zhang (2008) showed that these fingerprints have a robust
relation to the AMOC in the GFDL CM2.1 model. The standard
deviation of the AMOC index, defined as the maximum Atlantic
meridional overturning stream function at 401N, in the GFDL
CM2.1 1000 years control simulation is 1.8 Sv (Zhang, 2008). We
can roughly estimate the amplitude of the real world AMOC
variations using the observed subsurface temperature fingerprint
meridional overturning circulation (AMOC) variations using
i:10.1016/j.dsr2.2010.10.067
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of AMOC variations, assuming that the standard deviation of PC1
of subsurface temperature anomalies is linearly proportional to
that of AMOC variations and their ratio is the same in both
observations and the coupled model. The standard deviations of
PC1 of subsurface temperature anomalies at 400 m are 8.4 and
13.63 K, respectively, in observations (1955–2003) and in the
GFDL CM2.1 1000 years control simulation, given normalized
EOF1s. Hence, a first-order estimate of the standard deviation of
the real world AMOC variations at 401N is found to be 1.1 Sv.
However, the observed period is too short to estimate the AMOC
variability accurately. Sampling twenty 50-year nonoverlapping
segments from the control run indicates that the ratio of standard
deviation of PC1 of subsurface temperature anomalies to the
standard deviation of AMOC index ranges from 10.3 to 5.2,
suggesting that the standard deviation of the real world AMOC
index might range from 0.8 to 1.6 Sv. Also, this estimate of the
variability of the real world AMOC index is highly model-depen-
dent and is based on the behavior of the GFDL CM2.1 model.
Fig. 2. Absolute errors of 10 AR2 model hindcasts as a function of lead time, of the

PC1 time-series of objectively analyzed subsurface temperature anomalies, initi-

alized each year from 1984 to 1993. The initial AR2 model parameters are

computed from the 1955–1984 time-series. The thick solid black line shows the

mean of the absolute errors for the 10 hindcasts and the thick dashed black line

represents their standard deviation.
4. Predicting AMOC variations using subsurface temperature
and SSH fingerprints

We now take a step further by forecasting AMOC variations in
the near future using linear statistical models. The two identified
indices of AMOC variations, namely, SSH and Tsub PC1s, respectively,
provide slightly different initial conditions for conducting forecasts.
Satellite altimetry and Argo data provide extensive observations for
the recent past, but are too short to reconstruct AMOC variations in
the past several decades. Our approach here is to construct a single
AR model for AMOC variations using the much longer standardized
PC1 of the objectively analyzed North Atlantic Tsub anomalies
(1955–2003), and apply it to the standardized PC1s of the CDA Tsub

and altimetry SSH anomalies to conduct forecasts of near future
AMOC variations. The choice of using the AR model class over the
generalized auto-regressive integrated moving average (ARIMA)
class of time-series models is based on the slowly decaying auto-
correlation function of the Tsub PC1 at increasing lead times, which is
indicative of an AR process, and to avoid overfitting of the short
time-series and nonuniqueness of model coefficients.

Our application of the same statistical model for different
standardized data is pinned on the strong correlation between these
data over the past 15 years, discussed in the previous section, and
also supported by the strong model evidence about the correlation
and physical link between the two variables (Zhang, 2008). Hence,
we assume that the AR model parameters estimated from the PC1 of
objectively analyzed Tsub anomalies are also the best estimates for
the PC1s of the CDA Tsub and altimetry SSH anomalies in the North
Atlantic. In order to focus on the low-frequency decadal variability
of AMOC, we perform a five-year running mean smoothing on the
three time-series before we fit the model and make predictions.
Such filtering reduces the high frequency inter-annual noise of the
time-series and retains the low-frequency variability, thus reducing
irregularity. Low-order AR model parameters estimates are found to
be more robust for regularly behaved smoothed time-series and
such time-series are hence found to be more predictable (Press et al.,
1988). While computing the end-points of the running mean time-
series, we assume that values beyond the time-series are mirror
image of the time-series about the end-point, i.e. the beginning and
end of the time-series are extrapolated to have zero slopes at the
end points. Our results show little sensitivity to different smoothing
methods and we limit our discussion here to the analysis of the
running mean smoothed time-series.

A computation and comparison of the Schwarz Bayesian criterion
(SBC) (Schwarz, 1978) using the ARfit software (Schneider and
Neumaier, 2001) reveal that an AR model of order two (AR2) would
Please cite this article as: Mahajan, S., et al., Predicting Atlantic
subsurface and surface fingerprints. Deep-Sea Research II (2011), do
serve as the best fit for the smoothed PC1 of the objectively analyzed
detrended North Atlantic Tsub anomalies among the class of AR
models of higher orders. A lower order AR model also has the
advantage of reduced risk of overfitting associated with higher order
models. Our chosen AR2 model can be represented as

Xt ¼f1Xt�1þf2Xt�2þet ð1Þ

where Xt represents the value of the time-series at time t, e
represents white noise with a mean of zero, and f1 and f2

represent the auto-regressive parameters estimated from a least
squares fit to the PC1 of the observed North Atlantic Tsub

anomalies. For the observed Tsub PC1 time-series, samples f1

and f2 are estimated to be 1.62, and �0.69, respectively. The
variance of the two parameters is approximately given by
ð1�f2

2Þ=n, where n is the sample size, for sufficiently large samples
(Wilks, 1995), and decreases with increase in sample size. For a
sample size of n¼ 49, for the objectively analyzed PC1 of Tsub

anomalies, the standard deviation of both, f1 and f2, is about 0.1.
4.1. AR model validation

Validation of the AR2 model from hindcasts, conducted as
follows, shows considerable skill. The first 30 years (1955–1984)
of smoothed PC1 time-series of observed objectively analyzed
subsurface temperature anomalies (Tsub) are used to estimate the
initial AR2 model parameters. The AR2 model is applied to
compute the forecasts and their errors for the next 10 years
(1984–1994). Another year (1985) from the original time-series is
then added to the initial PC1 time-series and the AR2 model
parameters are re-estimated. Forecasts and their errors are
computed again for the next 10 years from the new AR2 model.
The process is repeated until the end of the time-series. The AR2
model forecast absolute errors for 10 such forecasts conducted
from 1984 to 1993 are shown in Fig. 2. Also, shown are the mean
absolute errors and the standard deviation of these 10 forecasts,
indicating the growth of the error at increasing lead times. AR2
model skill with respect to climatology forecast for lead time, j, is
computed from the prediction errors of the independent part of
meridional overturning circulation (AMOC) variations using
i:10.1016/j.dsr2.2010.10.067
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the data from 1984 to 2003 as

1�
MSEAR2

j

MSEclim
j

ð2Þ

where MSEAR2
j is the mean squared error of the AR2 model

predictions for lead time, j, and MSEclim
j is the mean squared error

of predictions for lead time, j, if the predictions are taken to be the
climatological mean of the time-series up to the beginning of the
year of forecast. A model skill value of one indicates a perfect
model, whereas a value of zero implies no skill. The AR2 model
skill for PC1 of observed subsurface temperature anomalies with
increasing lead times is shown in Fig. 3, and the skill falls below
0.7 after a lead time of three years.

A similar AR2 model ðf1 ¼ 1:82,f2 ¼�0:92Þ, fit to the first
500 years of the five-year running mean modeled Tsub PC1 from
the 1000-year GFDL CM2.1 control simulation, is applied to the
second 500 years of modeled Tsub PC1, SSH PC1, and AMOC index
of the control simulation to make predictions. The two AR models
show comparable skills (Fig. 3) in predicting observed Tsub PC1
and modeled Tsub PC1, SSH PC1 and modeled AMOC index. The
comparable skills of the AR2 model in predicting different time-
series justifies the application of the AR2 model, constructed from
Tsub PC1, to highly correlated quantities (SSH PC1 and AMOC
index) to make predictions. AR2 model skills are found to be
better than persistence and damped persistence (AR1) forecasts of
AMOC index from the GFDL CM2.1 control simulation.

The standard deviation of prediction errors computed from
predictions of 1984–2003, when the initial AR2 model is trained
on the period 1955–1984 also provides an estimate of the
statistical significance of AR2 predictions. Fig. 4 shows 10-year
hindcasts initialized at 1963, 1966, 1969, 1975, 1988 and 1992.
Also, shown are the 66% and 95% confidence intervals of these
predictions, which are computed as sj and 2sj of the actual
prediction errors of the AR2 model from the period 1984 to 2003
for lead time, j. Fig. 5 shows 10-year hindcasts and their
Fig. 3. Skill of the AR2 model constructed from the first 30 years of the objectively

analyzed Tsub PC1 to predict the objectively analyzed Tsub PC1 (black) of the latter

19 years. Also, shown are the skill of the AR2 model constructed from the first 500

years of the Tsub PC1 of GFDL CM2.1 control simulation to predict Tsub PC1 (blue),

AMOC index (red) and SSH PC1 (green) of the latter 500 years of the control

simulation, and skill of persistence (dashed gray) and damped persistence (solid

gray) forecast of the AMOC index computed from the latter 500 years of the

control simulation. Skill of an AR2 model fit to only 50 years of AMOC index from

the year 450 to 499 of the control simulation to predict modeled AMOC index of

the latter 500 years is shown by the dashed red line.

Please cite this article as: Mahajan, S., et al., Predicting Atlantic
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confidence intervals of standardized Tsub PC1 time-series from
the 1000 years control simulation of GFDL CM2.1 coupled climate
model for selected years, and the comparison with modeled
standardized AMOC anomalies. The modeled Tsub PC1 is in phase
with modeled AMOC variations. The parameters of the AR2 model
used to compute the hindcasts are estimated from the first 500
years of Tsub PC1 time-series of the control simulation, and the
confidence intervals are estimated from the actual prediction
errors of the AR2 model for the latter 500 years.

Fig. 6A shows the scatter plot of absolute errors of AR2 model
hindcasts at five-year lead time against the initial observed Tsub

PC1 values used for the hindcasts. AR2 model parameters com-
puted from the whole PC1 time-series are applied to derive these
hindcasts, adding some artificial skill to the hindcasts. It is
apparent that the skill of forecasts is independent of the initial
values. A similar scatter plot (Fig. 6B) from the GFDL CM2.1 model
reveals little correlations between forecast errors and the initial
values. Similar scatter plots for different lead times also reveal
little correlations between forecast errors and the initial values.

4.2. AR model forecasts

Fig. 7A shows the AR2 model predictions of PC1 of the
objectively analyzed Tsub anomalies for the next 10 years. Also,
shown are the 66% and 95% prediction confidence intervals based
on the actual prediction errors estimated from independent
hindcasts. A decline in the time-series is predicted, implying a
decline in AMOC strength in the near future (Zhang, 2008). Both
forecasts of PC1 of the CDA Tsub PC1 and altimetry SSH PC1 from
2008 onwards, using the same AR2 model (Figs. 7B and C), predict
a decline in the time-series and imply a decline in the AMOC in
the coming years. It should be noted that although the same AR2
model is used for each of the predictions, all three forecasts have
different initial conditions. A consistent prediction from all three
independently derived time-series is indicative of the robustness
of the predictions. Predictions from a separate AR model of the
leading mode of variability from the SVD analysis of the cross-
covariance matrix of CDA Tsub and altimetry SSH anomalies also
imply a decline in the AMOC in the coming years (not shown). As
a caveat, the predicted decline in the AMOC is based on the
fingerprints of the AMOC established from the GFDL CM2.1 model
with some evidence from observational data (Zhang, 2008), but
these fingerprints are not well-established in all climate models yet.

It should be noted that at much longer lead times, all sample
AR model predictions asymptotically lead to the mean of the
sample time-series, while the variance of prediction approaches
the variance of the sample time-series itself (Wilks, 1995). Hence,
the statistical AR model for the AMOC then performs no better
than the climatological predictions at much longer lead times.
The large variance of the prediction as seen in the confidence
intervals of the forecasts at increasing lead times indicates that
the possibility of a stronger AMOC in the coming years cannot be
completely ruled out.
5. Summary and discussion

The potential impacts of AMOC on global and regional climate,
including hemispheric scale surface temperature variations
(Zhang et al., 2007a), Atlantic hurricane activities, Sahel and
Indian summer monsoons (Knight et al., 2006; Zhang and
Delworth, 2006), North American and West European precipita-
tion (Enfield et al., 2001; Sutton and Hodson, 2005), make it
crucial to accurately monitor and predict AMOC variations to
improve global and regional climate predictions. Recent model-
ing and observational studies suggest the existence of the
meridional overturning circulation (AMOC) variations using
i:10.1016/j.dsr2.2010.10.067
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Fig. 4. AR2 model hindcasts of objectively analyzed Tsub PC1 (solid red line with triangles) and their 66% and 95% confidence intervals (dashed and solid red lines)

initialized at (A) 1963, (B) 1966, (C) 1969, (D) 1975, (E) 1988 and (F) 1992. AR2 model parameters computed from the whole PC1 time-series are used to compute the

hindcasts for (A)–(D). AR2 model parameters computed from the PC1 time-series for the period 1955–1984 are used to compute the hindcasts for (E) and (F).
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Fig. 5. AR2 model hindcasts of modeled Tsub PC1 (solid red line with triangles) and their 66% and 95% confidence intervals (dashed and solid red lines) initialized at years

(A) 503, (B) 516, (C) 547, (D) 570, (E) 610 and (F) 663 of the 1000 years GFDL CM2.1 control simulation. AR2 model parameters estimated from the first 500 years of Tsub

PC1 of the control simulation are used to compute the hindcasts. Also shown is the standardized AMOC index for the GFDL CM2.1 control simulation (black line).
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Fig. 6. (A) Scatter plot of the absolute prediction error of AR2 model at a lead time of five years against the amplitude of the objectively analyzed Tsub PC1 when the AR2

model is initialized. The AR2 model was constructed from the whole PC1 time-series from 1955 to 2003, and hindcasts were initialized each year from 1956 to 1998.

(B) Scatter plot of the absolute prediction error of AR2 model at a lead time of five years against the amplitude of the Tsub PC1 of the GFDL CM2.1 control simulation. The

AR2 model was constructed from the first 500 years of the PC1 time-series, and hindcasts were initialized each year for the next 495 years.

Fig. 7. Ten-year predictions (solid red lines with triangles) of smoothed standardized PC1s of (A) objectively analyzed Tsub, (B) CDA Tsub and (C) altimetry SSH, and the 66%

and 95% confidence intervals (dashed and solid red lines).
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low-frequency variability of the AMOC in the 20th century, and its
potential fingerprints are tangible in observational data. The task
of estimating the AMOC variations directly from observations
suffers from poor sampling of direct observations of the circula-
tion in the past. Hence, we rely on its fingerprints. Here, we
extend the analysis initiated in Zhang (2008), to use the leading
modes of the North Atlantic Tsub and SSH anomalies as finger-
prints of the AMOC, based on control simulation results of GFDL
CM2.1 model, by analyzing more up to date data including the
recent Argo subsurface temperature data. Our analysis suggests
that the current Argo network, along with satellite altimetry SSH
data could be used to estimate AMOC variations based on the
analysis of Zhang (2008).

A simple auto-regressive statistical model derived from these
fingerprints predicts that the AMOC strength will decline in the
near future. A weakening AMOC would tend to reduce oceanic
heat transport and cool the North Atlantic, although radiative
forcing changes could overwhelm that tendency. It should be
Please cite this article as: Mahajan, S., et al., Predicting Atlantic
subsurface and surface fingerprints. Deep-Sea Research II (2011), do
noted, however, that our model is simply based on historical
observations of the past five decades, which is considerably short
for estimating decadal/multidecadal scale variations, and our
predictions should be considered with that caveat. However,
hindcasts from an AR2 model trained from only a short period
(50 years) of the AMOC anomaly of GFDL CM2.1 control simula-
tion show comparable skill to the model trained on 500 years of
the Tsub PC1 from the GFDL CM2.1 control simulation (Fig. 2A),
therefore demonstrating some robustness to our predictions. In
the GFDL CM2.1 model, the AMOC demonstrates decadal to
multidecadal variability with a peak in the spectrum at a period
of about 20 years (not shown). Given the large differences in the
multidecadal variations of the AMOC in various climate models,
the results of the AR model trained with the GFDL CM2.1 control
simulation are hence not universal and are sensitive to the choice
of the climate model.

Global climate models’ predictions of AMOC variations depend
critically on the initial state of the AMOC in the model climate.
meridional overturning circulation (AMOC) variations using
i:10.1016/j.dsr2.2010.10.067
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However, model biases and lack of an accurate knowledge of the
initial state of the global climate lead to large uncertainties in the
prediction of AMOC variations in the real world and climate
model predictions are expensive. While our predictions are clearly
not near the ultimate goal of a prediction system for AMOC varia-
tions, they certainly serve as a first step in that direction using the
available data. The fingerprints of AMOC variations proposed
by Zhang (2008) and in this study can be used to establish better
initial conditions of the AMOC anomalies in coupled climate
models. Constraining the AMOC variability in coupled climate
models to that of the real world provides an opportunity to
improve climate model predictions and projections.

Observations of SST alone might have a weak AMOC signal to
background noise ratio, as the surface is considerably influenced
by the atmosphere and radiative forcings. Monitoring the AMOC
variations using subsurface measurements, emphasizes the
necessity for subsurface observing networks like Argo in addition
to satellite network. Analyses of the North Atlantic SSH and Tsub

would provide independent indirect estimates of the low-fre-
quency AMOC variability to compare with direct observations
using the ongoing RAPID moorings measurements (Cunningham
et al., 2007).

An important caveat of this study in using AMOC fingerprints
to make predictions is that the relationship between the finger-
prints and the AMOC variations is based on a single climate
model, the GFDL CM2.1, where the SSH and the subsurface
temperature patterns over the North Atlantic are found to be
robust fingerprints of the AMOC, and consistent with observed
SSH and subsurface temperature anomalies (Zhang, 2008). It
remains to be seen if and how these fingerprints are related to
the AMOC in other climate models, particularly given the wide-
spread differences in the simulated AMOC from different climate
models (Stouffer et al., 2006).
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