Syllabus for GTECH 710

Introduction to Geographic Information Systems
Spring 2009
Thursday 2:45 – 5:25 PM

Instructor: Dara Mendeloff
Place of instruction: Hunter N1090B
E-Mail: dmendelo@hunter.cuny.edu
Office hours: Th, 5:30-7:30 PM
Phone: (212) 772-5268

Course Overview:
In this course, we will cover the whole GIS production process from data modeling and acquisition to editing, analysis, and yes, cartographic output. GTECH 710 addresses students from both geography and other disciplines. Lecture examples, as well as hands-on exercises cover a range of application areas. The course itself is divided into two equally important parts: lectures, which introduce the theory of GIScience, and lab exercises, which help you to familiarize yourself with many aspects of the software. The lectures discuss concepts, data, tools, and major aspects to assignments. The laboratory sessions introduce the geospatial data and software tools needed for accomplishing the assignments. They will start at a very basic level, requiring little more than elementary experience with the windows operating system. The course utilizes a variety of resources, including the energy and creativity of students in the class.

Goals: This course is an introduction to GIS in general. We will be using ArcGIS in your lab assignments but the lectures concentrate on general principles and will note software-specific exceptions were applicable.

Objectives: You learn to see GIS as a process from conceptualizing spatial problems to different representations of spatial data, data sources, data organization, vector and raster analysis, and map production.

Outcomes: By the end of this course, you will be able to work independently with GIS, determine what is easy to do with GIS, what will take you considerable amounts of time, and which spatial research questions do not lend themselves to a GIS solution.

Required textbook:
None – and there are good reasons, which we will discuss during our first session.

However, experience has it that some students need the “security blanket” of a textbook even if the course does not follow it. If you belong into this group then you might benefit from having a look at any the following:

Pre- and co-requisites: None; however, I recommend that you enroll in parallel into an independent study GTECH 793 to do an individual software project. Have a look at http://giscience.hunter.cuny.edu/793/2009Spring/ to see what such GIS projects look like and feel free to contact your peers from the previous semester to see how much more they learned because of this duo of 710 and 793.

Policies:
Attendance is crucial. Assuming that the class-learning environment is active learning, meaning that most of the student performance is practical assignments rather than tests, adherence to protocols and the course timetable is very important. Active involvement in the course is evidenced in part by undertaking the mechanics of the practical assignments systematically, and learning the tools by hours of practice. In so doing the tools soon come to be seen as a means to an end, rather than the end itself. For example, you will make many maps, and may get caught
up in this creative activity, but remember that the maps are being made for particular scientific purposes.

Academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) is simply not acceptable. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures. Helping other students on use of the software is encouraged. However, do not help other students answer questions from the labs. Many of the problems have a "sample" problem, which includes the answer. The best way to help your fellow students is to work the sample problem. If a sample problem is not available, create an exercise similar to the problem in the lab and solve that problem. You can't actually learn this material unless you do the work yourself. Therefore, do not share your calculations or measurements with other students.

Hunter College regards acts of academic dishonesty (e.g., plagiarism, cheating on examinations, obtaining unfair advantage, and falsification of records and official documents) as serious offenses against the values of intellectual honesty. The College is committed to enforcing the CUNY Policy on Academic Integrity and will pursue cases of academic dishonesty according to the Hunter College Academic Integrity Procedures.

Special accommodations for persons with disabilities are provided upon request. Please see the instructor if you feel the need for them.

Lab policies are described in detail in http://www.geo.hunter.cuny.edu/techsupport/rules.html.

Assignments are due one week after they are given in class. It is in your best interests to keep up with the work and meet deadlines for assignments. Incomplete grades and time extensions are not an option for this course. There are no "extra-credit" assignments. Unless otherwise instructed, you will submit assignments in electronic form.

Criteria for evaluation:
Evaluation of your performance in this course will consider both lecture and laboratory components, using the following breakdown:

- 10 Quizzes: 30%
- 12 Lab exercises: 50%
- Midterm exam: 10%
- Final exam: 10%

Students are encouraged to pursue an individual software project for three extra credits. The requirements are rigorous and will be discussed during our first session.

Schedule:

<table>
<thead>
<tr>
<th>Class #</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01/28</td>
<td>Getting started; semester overview; (for some: project management)</td>
</tr>
<tr>
<td>2</td>
<td>02/04</td>
<td>Cartographic communication and geospatial visualization</td>
</tr>
<tr>
<td>3</td>
<td>02/11</td>
<td>Geodetic datums, projections, and coordinate systems</td>
</tr>
<tr>
<td>4</td>
<td>02/25</td>
<td>Organizing geographic data</td>
</tr>
<tr>
<td>5</td>
<td>03/04</td>
<td>Creating and editing spatial data</td>
</tr>
<tr>
<td>6</td>
<td>03/11</td>
<td>Secondary data sources; Geocoding</td>
</tr>
<tr>
<td>7</td>
<td>03/18</td>
<td>Exploring the geodatabases model</td>
</tr>
<tr>
<td>8</td>
<td>03/25</td>
<td>Midterm Exam; Creating geodatabases</td>
</tr>
<tr>
<td>9</td>
<td>04/08</td>
<td>Creating and editing features in a geodatabases</td>
</tr>
<tr>
<td>10</td>
<td>04/15</td>
<td>Adding behavior to a geodatabase</td>
</tr>
<tr>
<td>11</td>
<td>04/22</td>
<td>Geoprocessing and Modeling</td>
</tr>
<tr>
<td>12</td>
<td>04/29</td>
<td>Getting started with (raster-based) GIS analysis</td>
</tr>
<tr>
<td>13</td>
<td>05/06</td>
<td>Designing maps with ArcGIS</td>
</tr>
<tr>
<td>14</td>
<td>05/13</td>
<td>Data Quality, Social Aspects of GIS</td>
</tr>
<tr>
<td>15</td>
<td>05/18</td>
<td>to 05/21 Final Take-home Exam</td>
</tr>
</tbody>
</table>