

IMPORTANT

The electronic mesh created by the "X,Y coordinates" is <u>NOT</u> the same as the grid created by latitude and longitude.

Latitude and longitude information may be <u>added</u> to digitized X,Y coordinates as attributes, along with any other attribute the mapper/data entry person wishes to include in the data base.

Revising a Digitized Map Once a map has been digitized, we can revise it without redrawing it by just updating the attributes at a particular X,Y coordinate. We go to the <u>geocoded list</u> and make needed changes. The mapping program will reconfigure the data as soon as "enter" is hit. A new, revised map will be

 A new, revised map will be produced and is ready to be viewed and/or printed.

Automated Cartography Automated or computer cartography employs a digital database and software programs to COMPILE, DESIGN, DRAW and REVISE maps. It includes a Digital Elevation Model (DEM) which is a set of equally surfaced surface elevations keyed to latitude and longitude.

- DEM is compiled using global position system (GPS)
 (latitude/longitude/elevation/time).
- For example, flood zone maps are drawn based on a predetermined volume of water reaching a preset elevation. (This can be animated if time sequencing is included.) https://ccest.nosa.gov/flooderposure#/map

Portraying Crime Data

San Francisco crime statistics represented in DEM format showing crime numbers visually as "elevation": high and low crime areas.

- ✓ Shows crime concentration by neighborhood. Crime reports are located using X,Y coordinates.
- ✓ Studying individual crime maps can lead to selective policing.

Here the "hills" created by the digital elevation model (DEM) are the <u>number</u> of crimes recorded, not altitude.

GIS: Geographic Information Systems A GIS is a spatial information system that is designed for data management, mapping and analysis. Four features of a GIS make it a useful tool: 1. It allows data to be manipulated. 2. It is interactive. 3. It helps us to create standardized models. 4. It allows us to create geographic simulations: the "Smart GIS". Layered data tied to latitude and longitude coordinates allows a GIS to work.

GIS: Geographic Information Systems

A GIS is a spatial information system that is designed for data management, mapping and analysis.

I. It allows data to be manipulated.

There is a data base of location information **plus** instructions.

- ✓ can produce special purpose maps
- ✓ can help answer the question: WHAT IF?
- ✓ can analyze situations and come up with a final map

GIS: Geographic Information Systems

A GIS is a spatial information system that is designed for data management, mapping and analysis.

II. It is interactive.

When one or more variable is changed, all other data will change accordingly based on the pre-programmed instructions.

GIS: Geographic Information Systems

A GIS is a spatial information system that is designed for data management, mapping and analysis,

III. It helps us to create standardized models.

- Capability Models: Are the physical attributes of the area able to support activity "X"?
- Suitability Models: Do the socio-economic attributes make this area a good location for activity "X"?

GIS: Geographic Information Systems

A GIS is a spatial information system that is designed for data management, mapping and analysis.

IV. It helps us to create geographic simulations or "Smart GIS".

The map of the future is an intelligent image.

- a) **Recognize** a situation (based on a model).
- b) React to it (based on another model).
- c) Send out instructions (based on a third model).
- Your car GPS talking to you (insisting you to make a U-turn). Locating and isolating a water main break. Turning traffic lights in favor of emergency vehicles. Creating a detour route for traffic in congested areas.

