

G F Phy	EOG 1 People sical E	01 Part and the nvironr	t II eir nent	
16:	Eart Bios	h Hab _{phere}	itat	
	Prof. Anth Hunter Colle	oony Grande ege Geography	_	Lecture design presentation G Individual ima illustrations m to prior copyri

BIOMES

Terrestrial biomes vary with temperature and moisture giving us unique plant and animal communities.

- Each species has characteristics that allow it to survive within its physical environment.
- The components of biomes have to be preserved, recycled and renewed to avoid reaching carrying capacity (maximum life support) and to maintain the quality of habitat (quality varies with conditions).

Climax Vegetation

BIOMES: zones of life that develop in a unique combination of temperature, moisture, soil and sunlight.

- Climax vegetation is the <u>best species</u> for the existing conditions within the biome.
 - When conditions change, new species <u>better</u> <u>suited</u> for the conditions invade and a new sequence of plant growth begins.
 - When it stabilizes, climax vegetation is again attained.

NATURAL CONTROLS and CYCLES

- A. Temperature Controls: rotation (day and night), revolution (the seasons), cloud cover, and ocean circulation (surface, deep sea).
- B. Geologic Cycle: plate tectonics, rock cycle, building and gradational forces

> C. Biochemical Cycles

- 1. Hydrologic (water) cycle
- 2. Carbon-Oxygen cycle
- 3. Nutrient cycle
- *All these controls and cycles are interrelated.*

CARBON-OXYGEN CYCLE

NEGATIVE Variables of Human Impact

- 1. Deforestation (decreases absorption of CO₂)
- **2. Burning of fossil fuels** (adds more CO_2)
- 3. Urbanization (decreases absorption; adds more \mbox{CO}_2)
- **4. Pollution of the ocean surface** (decreases absorption of CO_2)
- 5. Global warming (melting of permafrost/ice pack releases stored CO_2 and other greenhouse gasses)

NUTRIENT CYCLE

The nutrient cycle adds fertility to the soil. **Nitrogen fixation** (making nitrogen usable)

is an important component of the cycle. There are 3 aspects of the cycle:

1. DECOMPOSITION (rotting organic material; mixes with inorganic material to give a balanced soil) 2. FIRE (ash from burnt vegetation; vaporized nutrients released into atmosphere mix with rainwater. NOTE: ash is naturally alkaline and counteracts a higher acidic pH levels in a soil.)

3. FLOODING (seasonal flooding leaves behind a layer of nutrients from upstream areas; supplements local nutrients)

NUTRIENT CYCLE: Human impact

The nutrient cycle has been affected by:

- Land alternation; cutting forests, plowing grasslands, urbanization, suburbanization
- Dousing forest/grassland fires
- Stream alteration; dam building, dredging
- Land pollution; landfills, mining waste
- Misuse of artificial fertilizers/herbicides

ΝΕΧΤ

Natural Hazards

and Human Impact