5
 Geographers' Tools: Location Systems

Prof. Anthony Grande
 Hunter College Geography

Location Systems

* Earth's Grid: system of points on the surface connected by intersecting lines of latitude and longitude.

To portray data spatially, we need a way to accurately locate places on the earth's surface.

* This is the GRID SYSTEM.
$>$ Composed of lines of latitude and longitude.
\checkmark Allows us to see locations, patterns, and interrelationships.
\checkmark Allows us to measure distance.
\checkmark Allows us to determine area.

\& LATITUDE: Distance

 measured in degrees NORTH and SOUTH of the EQUATOR.It is the result of geometric calculations using the equatorial plane of the earth (equator) as its base. (The equator is at the center point in the movement of the sun's vertical rays on the earth's surface.)
The measured angle of the plumb line from the earth's surface to the center of the equatorial plane equals latitude.

Latitude

They are equally spaced.
They never cross.
They never converge.

Latitude

* Latitude is also astronomical. You can measure the angle of the sun above the horizon or the height of the North Star at night using a "sextant." The angle equals latitude.

Latitude

* There are seven lines of

 latitude we need to knowAll are based on astronomical observations.

$90^{\circ} \mathrm{N}=$ North Pole

$66.5^{\circ} \mathrm{N}=$ Arctic Circle $23.5^{\circ} \mathrm{N}=$ Tropic of Cancer
$0^{\circ}=$ Equator
$23.5^{\circ} \mathrm{S}=$ Tropic of Capricorn $66.5^{\circ} \mathrm{S}=$ Antarctic Circle $90^{\circ} \mathrm{S}=$ South Pole

Longitude

*LONGITUDE:

Distance measured in degrees east and west of the $\underline{0^{\circ} \text { line }}$ which has been designated the "Prime Meridian."

- All other lines of longitude are called meridians and each one extends from the North Pole to the South Pole.
- They all converge (touch) at the poles.
- Thus, the distance between meridians varies with latitude from the pole to the equator.

Meridians are man-made phenomena based on the geometry of circles (360ㅇ)

Why Greenwich Meridian?

At one time, countries defined their prime meridian by the location of the observatory telescope that was used to gather the astronomical data.
1766 - Britain published the first nautical almanac. Its detailed maps, charts and tables, all based on the 0° meridian at London, became widely used. 1870s and 1880s - a series of interTo your left is the hemisphere of the Atlantic, the hemisphere of Europe
and Africa, of Roman numerals and Indian script, of the Silk Road and解 the rising sun.
To your right is the hemisphere of the Pacific and the American West, the hemisphere of Japan and China, of calligraphy and rocketry, of towering volcanoes and the starry night.
Beneath your feet is the line that divides the two.
From 1848 to 1884, the United States of America marked the center of its world at this line. Before it accepted the Meridian at Greenwich, England, as the "Prime Meridian," the United States separated the world into eastern and western hemispheres along the American Meridian, a
line that originated at the old U.S. Naval Observatory and passed through this point.
This Meridian was used to survey the western states, and the straight porders of those states are measured in integral degrees from this point.

Wyoming Eastern Border: 29 Degrees (Am.) West
Colorado Eastern Border: 27 Degrees (Am.) West
Western Border: 34 Degrees (Am.) West
Oregon Eastern Border: 42 Degrees (Am.) West
Iso borders of Arizona, California, Idaho, Kansas, Montana, Nebraska Nevada, New Mexico, North and South Dakota, Utah. and Washington.
The
Washington
University
Stephen Joel Trachtenberg
President
June 2000
Meridian
$\xrightarrow{\text { American Eastern Hemisphere }}$ national conferences was convened to the address prime meridian issue.
> The result was a worldwide acceptance of the Greenwich Meridian as the Prime Meridian $\left(0^{\circ}\right)$.

Drawing Longitude

Meridians of longitude are marked by first dividing the equatorial circle into 360 segments, then dividing every circle of latitude into 360 segments and finally connecting all likenumbered degrees.

* There two meridians we need to know:
$0^{\circ}=$ Prime Meridian $180^{\circ}=$ International Date Line (IDL follows along $18 \mathbf{0}^{\circ}$ but not exactly.) FYI: 0° and 180° are neither E or W

Finding Longitude

To determine your longitude on the earth's surface you need two accurate clocks.
One clock (chronometer) set for the time at $\mathbf{0}^{\circ}$ (the Prime Meridian or GMT) and one set locally by the angle of the sun.
The difference in time between them indicates distance from the Prime Meridian.

Each $60 \mathrm{~min}=15^{\circ}$ of longitude.
Each $30 \mathrm{~min}=7.5^{\circ}$ of longitude.
Each $15 \mathrm{~min}=3.75^{\circ}$ of longitude.
Each $4 \mathrm{~min}=1^{\circ}$ of longitude.

Latitude and Longitude

Latitude and Longitude

(a)

Latitude and Longitude

Latitude and Longitude

https://www.youtube.com/watch?v=swKBi6hHHMA 3.5 min summary video

Latitude and Longitude

We can divide the earth's grid into four quadrants:

north+west north+east

south+west south+east

* REMEMBER:
- Latitude is only designated NORTH or SOUTH.
- Longitude is only designated EAST or WEST.

Reading Latitude and Longitude

When locating places on the earth, we start where the base lines of latitude and longitude cross:

$$
0^{\circ}, 0^{\circ}
$$

- First we count lines north or south of the equator.
- Then we count lines east or west of the prime
 meridian.

TIME

* The longitude of a location is determined

 by time differential.You need to know the difference between "local" or "sun" time and "prime meridian time (GMT)."

NOTE: It is the same time (hour of the day) along any meridian from the North Pole to the South Pole.

TIME ZONES

* Standard Time Zone: an area of the earth that is 15° of longitude wide $\left(360^{\circ} \div 24 \mathrm{hrs}\right.$ of one rotation $\left.=15^{\circ} / \mathrm{hr}\right)$, where all clocks are set when solar noon occurs at the zone's central meridian.
$*$ Each 15° of longitude = 1 hour (60 min) of time.
- Each 7.5° of longitude $=30$ minutes.
- Each 3.75° of longitude = 15 minutes.
- Each 1° of longitude $=4$ minutes.
\checkmark Time zones are based on calculating longitude.
\checkmark Concept created in 1883 by US railroad companies for scheduling purposes.
\checkmark Linked to International Meridian Conference of 1884
\checkmark Officially adopted by countries starting in the 1920s.

TIME ZONES

* There are 24 world standard time zones, each 15° wide and equal to one hour.
- Numerous off-standard zones (half hour, multi-hour, sun) created by governments.
- Over 30 irregular-shaped
$x^{x+\infty}$
How did the Republic of Kiribati become the first country to enter the new millennium? By shifting the international date line more than 2,000 miles east. So that it will be 2000 in Kiribati while it's still 1999 in Hawail'. zones due to political borders.
* The International Date Line generally follows the 180° meridian - but not exactly in order to keep political units in the same date. When the line is crossed the date changes, e.g., 3 PM Tuesday becomes 3 PM Wednesday, or vice versa, depending on direction of movement.

Global Positioning System

* An array of 29 (24 active) satellites orbits 12,500 miles above the earth.
$>$ Need to be in contact with 3 to 4 satellites to get a fix on a location: latitude, longitude and elevation.

GPS Dependence

Using GPS

- Location - positioning things in space
- Navigation - getting from point a to point b
-Tracking - monitoring movements
- Mapping - creating maps based on those positions
- Timing - precision global timing

https://www.novatel.com/industries/agriculture/ 2 min GPS ad

Using GPS-enabled Apps to Track Your Location

- Location - positioning things in space
- Navigation - getting from point a to point b
- Tracking - monitoring movements
- Mapping - creating maps based on those positions
- Timing - precision global timing

Data reviewed by the NYTimes shows over 235 million locations captured from more than 1.2 million unique devices during a three-day period in 2017.

Tracking GPS-enabled Devices: aka, Tracking People

In about four months' of data reviewed by The Times, her location was recorded over 8,600 times - on average, once every 21 minutes.

The information from one Sunday included more than 800 data points from over 60 unique devices inside and around a church in New Jersey. By Michael H. Keller|Satellite imagery by Mapbox and DigitalGlobe

EXTRA CREDIT

Extra Credit Atlas Exercise

 for Exam I is available on the Course Home Page.Submit answers using the blue Scantron sheet by Sept. 26, 2019.

Once you have completed the exercise, transfer your answers to the blue Scantron sheet using a \#2 pencil. Completely erase all mistakes and stray marks. LATE answer sheets will NOT be accepted.

NEXT

Parts of Maps

